

ESMT FE8116x
Technical Reference
Manual

Revision: V0.1 Date: October 15,
2022

TABLE OF CONTENTS

1	GENERAL DESCRIPTION.....	5
2	FEATURES	
2.1	FE81 Series Features	6
3	PARTS INFORMATION LIST	
3.1	ESMT FE81 Series Selection Guide.....	10
4	PIN CONFIGURATION	11
5	BLOCK DIAGRAM	
5.1	ESMT FE81 Series Block Diagram.....	12
6	BLOCK FUNCTIONAL DESCRIPTION	
6.2	Memory Organization	
6.2.1	FE81 Series Memory Map	15
6.3	External Vectored Interrupt Controller (EVIC)	
6.3.1	Overview.....	21
6.3.2	FE81 Series Interrupt Entry Point and Interrupt Map.....	22
6.3.3	FE81 Series Interrupt Priority	23
6.3.4	External Interrupt	25
6.3.5	Register Map and Description.....	26
6.4	System Manager Controller (SMU)	
6.4.1	Overview.....	36
6.4.2	Reset Control	37
6.4.3	General Purpose I/O	39
6.4.4	Register Map and Description.....	40
6.5	Clock Controller (CLKCTRL)	
6.5.1	Overview	77
6.5.2	Clock Plan Block Diagram.....	78
6.5.3	Low Power Mode...	80
6.5.4	Register Map and Description.....	83
6.6	Flash Memory Controller (FMC)	
6.6.1	Overview	96
6.6.2	System Configuration	98
6.6.3	Debug Access Port (DAP).....	100
6.6.4	In-System-Programming (ISP).....	101
6.6.5	Register Map and Description.....	102
6.7	Sigma-Delta ADC (SDM)	
6.7.1	Overview	112

6.7.2	Register Map and Description.....	113
6.8	Analog Controller (ANAC)	
6.8.1	Overview	131
6.8.2	Register Map and Description.....	132
6.9	Real-Time Clock (RTC)	
6.9.1	Overview.....	143
6.9.2	Register Map and Description.....	144
6.9.3	Programming Model	155
6.10	Watchdog Timer Controller (WDT)	
6.10.1	Overview	157
6.10.2	Register Map and Description.....	159
6.10.3	Programming Model.....	165
6.11	Timer Controller (TMR)	
6.11.1	Overview.	166
6.11.2	Register Map and Description.	168
6.11.3	Programming Model.	179
6.12	STN LCD Controller (LCM)	
6.12.1	Overview.	181
6.12.2	Register Map and Description.....	184
6.12.3	Programming Model.	188
6.13	I2C Serial Interface Controller (I2C)	
6.13.1	Overview.....	189
6.13.2	Register Map and Description.....	191
6.13.3	Programming Model.....	207
6.14	UART Interface Controller (UART)	
6.14.1	Overview.	211
6.14.2	Register Map and Description.	215
6.14.3	Programming Model.	226
6.15	Serial Peripheral Interface Controller (SPI)	
6.15.1	Overview.	227
6.15.2	Register Map and Description.	230
6.15.3	Programming Model.	257
6.16	Multi-Function ALU (MFA)	
6.16.1	Overview.	259
6.16.2	Register Map and Description.....	260
6.16.3	Programming Model.	272
6.17	Capture (CAP)	
6.17.1	Overview.....	275

6.17.2	Register Map and Description.....	277
6.17.3	Programming Model.	285

1 GENERAL DESCRIPTION

ESMT FE81 series is a general purpose 8051 platform that targets on various consumer applications. The MCU platform is integrated with an 8051 core running up to 12MHz, up to 8K-byte eMTP flash memory, and up to 1K-byte data SRAM (X-RAM) with 256-byte internal-SRAM (I-RAM). The MCU platform is also integrated with rich peripherals support, including real-time clock (RTC), watchdog timer controller (WDT), timer controller (TMR), UART interface controller (UART), I2C serial interface controller (I2C), serial peripheral interface controller (SPI), 24-bit high resolution delta-sigma ADC (SDM), analog controller (ANAC), STN LCD driver (LCM), and multi-function ALU (MFA).

ESMT FE81 series supports 2.2V ~ 3.6V voltage range. The operation temperature is from -40°C ~ 125 °C.

Part	RTC	WDT	TMR	UART	I2C	SPI	SDM	ANAC	LCM	MFA	CAP
FE81XX	1	1	3	1	1	1	1	1	1	1	1

Table 1-1 Peripheral Table

2 FEATURES

2.1 FE81 Series Features

- 8-bit Micro-controller
 - 8051 core runs up to 12MHz@2.9V~3.6V
 - 8051 core runs up to 3MHz@1.8V~2.9V
 - 1-T architecture with extensive clock-gating
 - Compatible 8051 instruction format
 - Single-cycle 8-bit hardware multiplier
 - 2-wire ICE debugger interface ESMT-SWD
 - ◆ 8 hardware breakpoints support
 - ◆ Memory subsystems and all peripherals access
 - Synchronous high-performance bus (HPB) for memory subsystems
 - Synchronous peripheral bus (PFB) for all peripherals
- Embedded RAM
 - 1 x 256-byte Internal I-RAM for application data storage
 - 1 x 1K-byte single port SRAM (X-RAM) for application data storage
- Flash Memory
 - 8K-byte eMTP flash for application code
 - 32-byte information eMTP flash for system configuration parameters
 - 32-byte information eMTP flash for customer data storage
- Advanced Power Management
 - Various low power mode including slow, wait, slow wait, halt, and shutdown modes
 - External interrupt, reset, and peripheral wake-up mechanism
- System Manager Controller (SMU)
 - Part number identification
 - Reset control mechanism
 - General purpose I/O control mechanism
 - Timer additional control mechanism
 - SRAM parameter configuration control
- Clock Controller (CLKC)
 - High-performance bus (HPB) clock control mechanism
 - Peripheral bus (PFB) clock control mechanism
 - Clock selection control mechanism
 - Clock division control mechanism
 - Power down control mechanism

- External Vector interrupt controller (EVIC)
 - 16 hardware vector interrupt signals
 - Fixed priority level triggered interrupt mechanism
 - Global interrupt enable for nested interrupt selection
 - Edge triggered type of external interrupt
- Flash Memory Controller (FMC)
 - Application code eMTP flash memory access
 - System configuration information eMTP flash memory access
 - Customer data information eMTP flash memory access
- Real-Time Clock (RTC)
 - Second, minute, hour, day for periodic interrupts
 - Programmable alarm support
- Watchdog Timer Controller (WDT)
 - Provide combinations of interrupt and reset when the watchdog timer expires
 - Provide a write protection mechanism for the control or restart registers
 - Programmable source of timer clock
 - Configurable magic numbers for write protection of registers and restart of the timer
 - Externally Watchdog timer be paused by FMC controller
- Timer Controller (TMR)
 - 3 timer controllers
 - Each Timer
 - ◆ Each timer has 2-channel
 - ◆ Each channel supports 6 multi-function timers
 - 32-bit Timer / 2 16-bit Timers / 4 8-bit Timers / PWM / PWM+16-bit Timer / PWM+8-bit Timers
 - Programmable source of timer clock
 - Timers can be externally paused by SMU controller
- UART Interface Controller (UART)
 - 1 UART interface controller
 - Over-sampling frequency is programmable
 - Support 5 to 8 bits per character
 - Support 1, 1.5, 2 STOP bits
 - Support even, odd and stick parity bits
 - Support programmable baud rate
 - 16-byte hardware transmit or receive FIFOs
- I2C Serial Interface Controller (I2C)
 - 1 I2C serial interface controllers
 - Support standard-mode (100Kb/s), fast-mode (400Kb/s), and fast-mode plus (1Mb/s)

- protocols
 - Programmable master or slave mode
 - Support 7-bit and 10-bit addressing mode
 - Support general call address
 - Auto clock stretching
 - Programmable clock or data timing
 - 8-byte hardware transmit or receive FIFOs
- Serial Peripheral Interface Controller (SPI)
 - 1 serial peripheral interface controllers
 - Support MSB or LSB first transfer
 - Support programmable SPI SCLK
 - Programmable master or slave mode
 - ◆ SPI Master maximum@6MHz with PFB clock 12MHz
 - ◆ SPI Slave maximum@3MHz with PFB clock 12MHz
 - Support 8- or 16- or 24-bit address bus
 - 8-byte hardware transmit or receive FIFOs
- Delta Sigma ADC (SDM)
 - 1K samples per second
 - 24-bit resolution
 - External sensor calibration
 - Temperature calibration
- Analog Controller (ANAC)
 - Current source generation
 - Comparator function
 - Low voltage detection control
 - Low voltage reset control
 - Internal OPAMP
- General Purpose I/O (GPIO)
 - 32 GPIOs, PA0 ~ PA7, PB0 ~ PB7, PC0 ~ PC7, PD0 ~ PD7
 - Five GPIO modes
 - ◆ Input mode
 - ◆ Push-pull mode
 - ◆ Open-drain mode
 - ◆ Internal pull-up mode
 - ◆ High-impedance mode
 - PA2, PA3, PA5, PB3 can be configured as external interrupt sources with hardware debounce support
 - Peripheral IOs are pin-shared with GPIOs

- Multi-Function ALU (MFA)
 - 16-bit signed- or unsigned- multiplier
 - IEEE754 floating point multiplier
 - IEEE754 Log2 unit
- Capture Controller (CAP)
 - 4 channels for input capture function
 - 4 capture modes
 - ◆ Edge, rising to falling, falling to rising, falling to falling
 - Capture input filter function
- Clocks
 - Build-in 12MHz high speed RC oscillator
 - Build-in 32KHz low speed RC oscillator
 - External 12MHz or 32KHz crystal input
- Packages
 - RoHS
 - LQFP 48-pin
 - QFN 48-pin

3 PARTS INFORMATION LIST

3.1 ESMT FE81 Series Selection Guide

Part No.	Flash	SRAM	IO	Timer PWM	UART	SPI	I2C	MFA	I2S	Comp.	ADC	ANAC	RTC	CAP	OCD ISP
FE8116x	8KB	1KB	32	3	1	1	1	1	—	1	1	1	1	1	Y

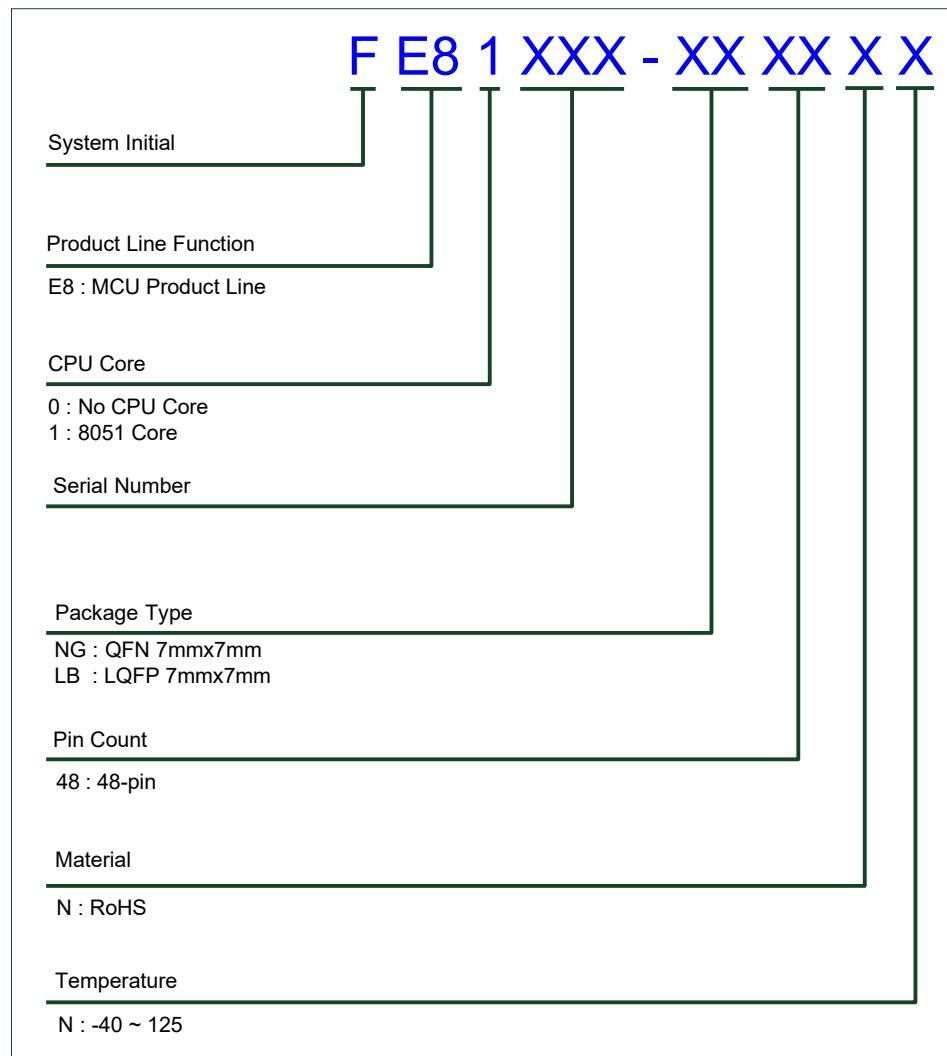


Figure 3.1-1 FE81 Series Selection Code

4 PIN CONFIGURATION

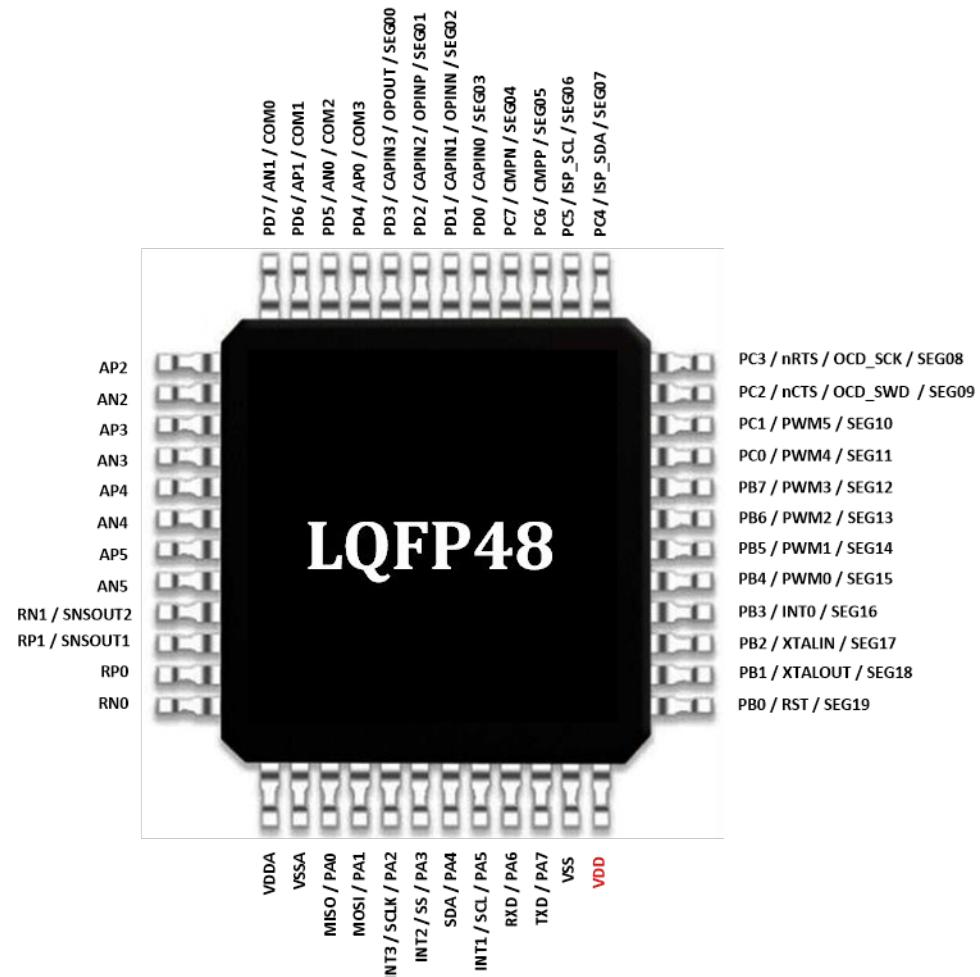


Figure 4-1 FE81 Series Pin Configuration

5 BLOCK DIAGRAM

5.1 ESMT FE81 Series Block Diagram

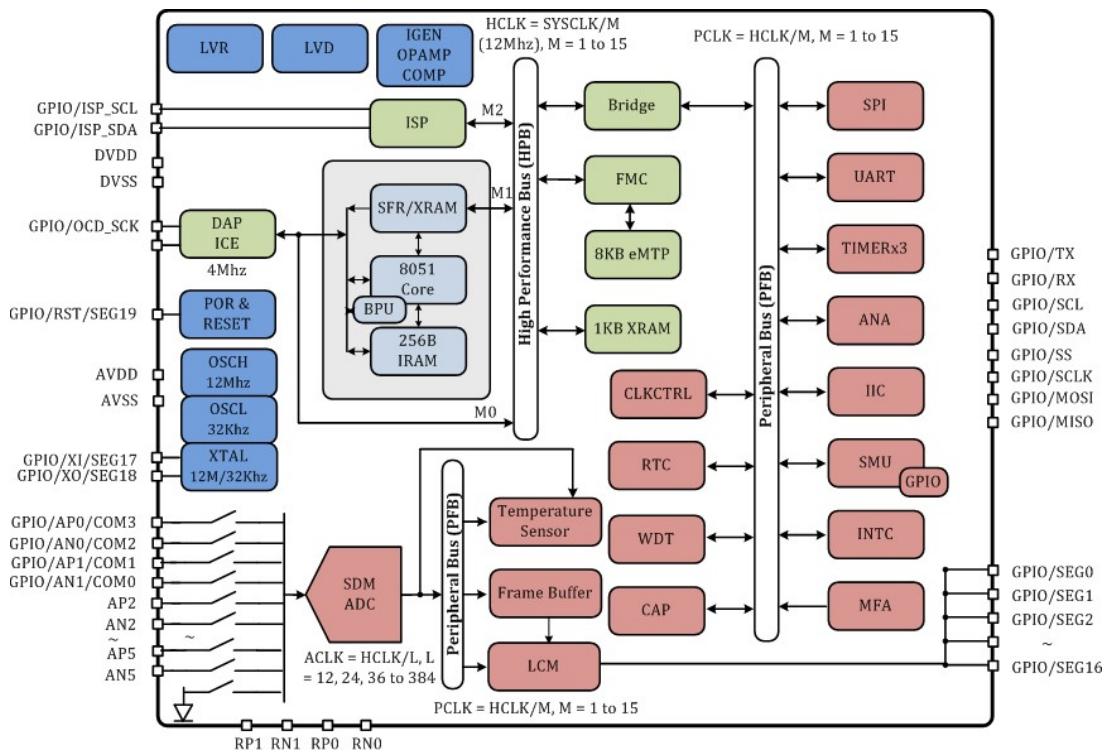


Figure 5.1-1 FE81 Series Block Diagram

The block diagram of FE81 series is illustrated in Figure 5.1-1. The 1-T 8051 core, different from conventional 8051 architecture, accesses memory subsystem and peripherals via the same master port (M1), which increases the benefit of limitation of amount of peripherals and eases the system hardware cost as well. The 8051 core runs up to 12MHz with internal 256-byte I-RAM runs at the same frequency.

The Debug Access Port (DAP), cooperated with Break Point Unit (BPU), is responsible for 8051 core control, break points management and access of memory subsystem and all peripherals via master port (M0), which implements on-chip debugging function with commercial IDE tool. The DAP runs up to 4MHz based on the frequency of external 2-wire ESMT-SWD (OCD_SCK, OCD_SWD) interface.

The In System Programming (ISP), used to program on-chip flash memory via external “I2C protocol”, runs at the frequency of external I2C interface (Up to 400Kb/s) and achieves the purpose of application code on-line update.

The FE81 series supports eMTP flash memory instead of conventional flash memory which has the benefit of hardware cost, although the endurance cycle of eMTP is 1000 cycles. The eMTP has an information block region which can be used for user data storage, whereas the program code is stored at the main block region of the eMTP.

The Flash Memory Controller (FMC), used to access the eMTP, together with eMTP and 1K-byte X-RAM located at high performance bus (HPB) runs at the same frequency domain with the 8051 core.

The FE81 series supports rich peripherals that can be used for signal-conditioning, system peripherals and system connectivity. All these peripherals are located at the peripheral bus (PFB) with the frequency be able to be decreased at lower clock rate (Up to 12MHz). Below lists the peripheral functionalities.

Functionality	Peripheral
Signal Conditioning	Delta Sigma ADC
	External Sensor and Temperature
System Peripherals	Real Time Clock
	Watchdog Timer
	Timer
	STN LCD Controller
	Multi-function ALU
	Analog Controller
	Capture
	UART
	I2C
System Connectivity	SPI

Table 5.1-1 Peripheral Functionality

The FE81 series supports 3 clock sources for general purpose applications, which are on-chip 12 MHz high speed RC oscillator, on-chip 32KHz low speed RC oscillator, and external 12MHz/32KHz crystal.

The other analog (ANAC) features include Low Voltage Detect (LVD), Low Voltage Reset (LVR), current source generation (I-GEN) for off-chip sensor application, internal comparator with external differential input, internal OPAMP with external differential input and output.

6 BLOCK FUNCTIONAL DESCRIPTION

6.1 8051 Core and Bus Architecture

8051 is an 8-bit micro-controller designed for general purpose applications. Traditionally, 8051 uses three address buses to access memory subsystem and peripherals, where are I-RAM bus, SFR bus, and X-RAM bus. In ESMT FE81 series architecture, the I-RAM bus is used to access the internal 256-byte RAM as traditional 8051 does, however, the SFR bus and X-RAM bus are reduced to a single 16-bit high-performance bus and thus a larger memory addressing space is used for memory subsystem and peripherals without the limitation of the amounts of peripherals. That is, a more complicated bus matrix architecture is able to be used for more complicated MCU applications.

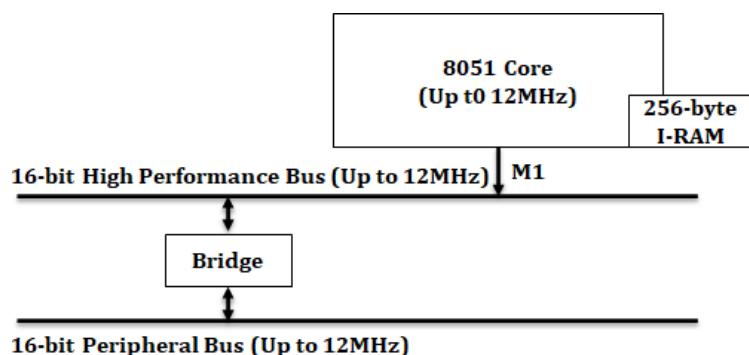


Figure 6.1-1 FE81 Series 8051 Core and Bus Architecture

Figure 6.1-1 depicts the 1T 8051 core and FE81 series bus architecture. This high-performance bus (HPB) runs at the same frequency with the 8051 core, and the frequency of the peripheral bus (PFB) can be decreased according to application requirements. For more detailed description, please refer to the clock architecture in section 6.5.

6.2 Memory Map Organization

6.2.1 FE81 Series Memory Map

The FE81 series provides 64KB (16-bit) memory addressing space. The memory map of FE81 series is illustrated in Figure 6.2-1.

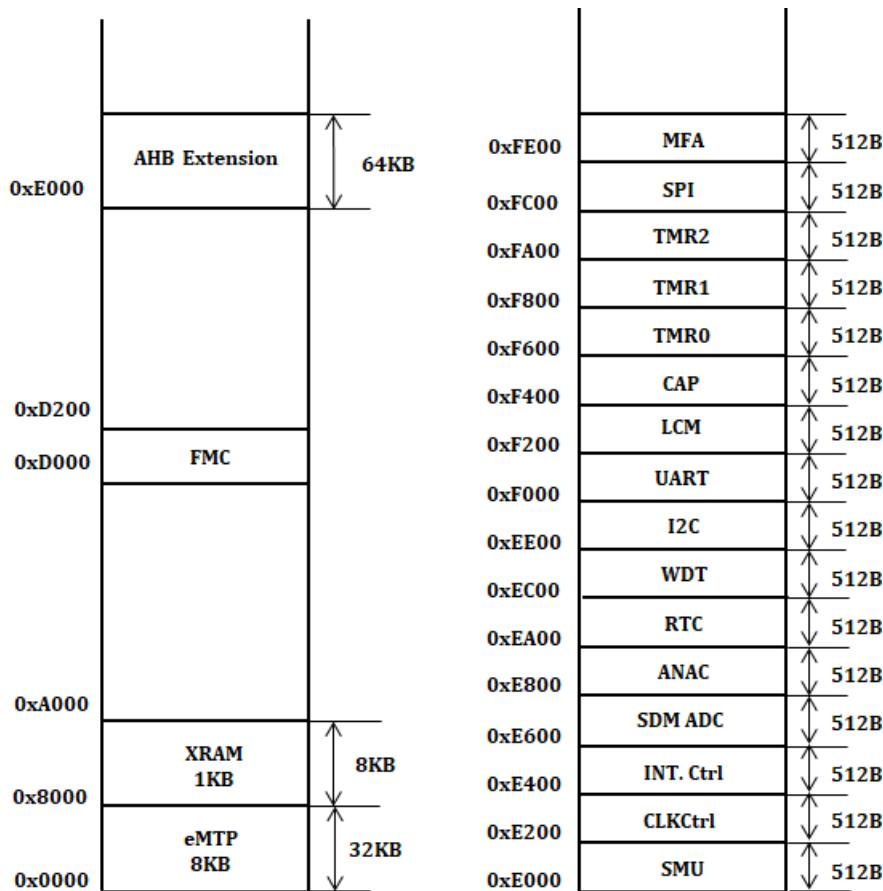


Figure 6.2-1 Memory Map of FE81 Series

The 0x0000 address is mapped to the 8K-byte eMTP for fetching application code by 8051 core after powering on. The 0x8000 address is mapped to the 1K-byte SRAM (X-RAM) for application data. The 0xD000 address is mapped to the flash memory controller (FMC) for accessing data from eMTP by 8051 core or DAP or ISP. The 0xE000 address is mapped to the peripherals for signal conditioning, system peripherals and system connectivity. Table 6.2-1 illustrates the detail information of FE81 series memory organization

Address Space	Token	Controllers
Flash and SRAMs Memory Space		
0x0000 ~ 0x7FFF	FLASH_BA	eMTP Flash Memory Space (32KB) Only 8KB is used.
0x8000 ~ 0xBFFF	XRAM_BA	XRAM Memory Space (8KB) Only 1KB is used.
High Performance Bus (HPB) Controllers Space		
0xD000 ~ 0xD1FF	FMC_BA	FMC Memory Space (512B)
Peripheral Bus (PFB) Controllers Space		
0xE000 ~ 0xE1FF	SMU_BA	System Management Unit Memory Space (512B)
0xE200 ~ 0xE3FF	CLKCTRL_BA	Clock Controller Memory Space (512B)
0xE400 ~ 0xE5FF	INTCTRL_BA	Interrupt Controller Memory Space (512B)
0xE600 ~ 0xE7FF	SDM_BA	Delta Sigma ADC Memory Space (512B)
0xE800 ~ 0xE9FF	ANAC_BA	Analog Controller Memory Space (512B)
0xEA00 ~ 0xEBFF	RTC_BA	Real-Time Clock Memory Space (512B)
0xEC00 ~ 0xEDFF	WDT_BA	Watchdog Memory Space (512B)
0xEE00 ~ 0xEF00	I2C_BA	I2C Memory Space (512B)
0xF000 ~ 0xF1FF	UART_BA	UART Memory Space (512B)
0xF200 ~ 0xF3FF	LCM_BA	LCD Controller Memory Space (512B)
0xF400 ~ 0xF5FF	CAP_BA	Capture Controller Memory Space (512B)
0xF600 ~ 0xF7FF	TMRO_BA	Timer0 Memory Space (512B)
0xF800 ~ 0xF9FF	TMR1_BA	Timer1 Memory Space (512B)
0xFA00 ~ 0xFBFF	TMR2_BA	Timer2 Memory Space (512B)
0xFC00 ~ 0xFDFF	SPI_BA	SPI Memory Space (512B)
0xFE00 ~ 0xFFFF	MFA_BA	Multi-Function ALU Memory Space (512B)

Table 6.2-1 FE81 Series Memory Map Table

Table 6-2 illustrates all peripheral related register fields started from address 0xE000 to 0xFFFF. Please refer to each section of peripheral for detailed descriptions.

Symbol	Description	Offset	Bit Address & Symbol									Reset
			Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Flash Memory Controller Base 0xD000												
FMCCON	FMC Control	0x00	FMCEN	INFOEN	ISAVB	—	—	—	—	—	WDTOF	0x20
FMCCMD	FMC Command	0x01					CMD					0x00
FMCADRO	FMC Address0	0x02					FMADRO					0x00
FMCADR1	FMC Address1	0x03					FMADR1					0x00
FMCDATA0	FMC Data 0	0x04					FMDATO					0x00
FMCDATA1	FMC Data 1	0x05					FMDAT1					0x00
FMCSTAT	FMC Status	0x06	BUSY	ECC	—	—	—	—	—	—		0x00
FMCKSUM0	FMC Checksum 0	0x07					CKSUM0					0x00
FMCKSUM1	FMC Checksum 1	0x08					CKSUM1					0x00
System Management Unit Base 0xE000												
PNIDO	Part Number 0	0x00					PNIDO					0x00
PNID1	Part Number 1	0x01					PNID1					0x00
PNID2	Part Number 2	0x02					PNID2					0x00
PNID3	Part Number 3	0x03					PNID3					0x00
RSTSRC	Reset Source	0x04	—	LVR	—	WDT	CPU	CHIP	EXT	POR		0x01
SYRSRTC	System Reset	0x05	—	—	—	—	EXTR	CPURH	CPUR	CHIPR		0x00
PERRSTCO	Peripheral Reset 0	0x06	UARTR	I2CR	—	RTCR	—	LCMR	ANAR	SDMR		0x00
PERRSTC1	Peripheral Reset 1	0x07	—	—	CAPR	MFAR	SPIR	TMR2R	TMR1R	TMR0R		0x00
PACTRLO	PA Control 0	0x08	PA7CTL0	PA6CTL0	PA5CTL0	PA4CTL0	PA3CTL0	PA2CTL0	PA1CTL0	PA0CTL0		0x0F
PACTRL1	PA Control 1	0x09	PA7CTL1	PA6CTL1	PA5CTL1	PA4CTL1	PA3CTL1	PA2CTL1	PA1CTL1	PA0CTL1		0x0F
PAMSO	PA Mode Select 0	0x0C	PA7MOD0	PA6MOD0	PA5MOD0	PA4MOD0	PA3MOD0	PA2MOD0	PA1MOD0	PA0MOD0		0x00
PAMS1	PA Mode Select 1	0x0D	PA7MOD1	PA6MOD1	PA5MOD1	PA4MOD1	PA3MOD1	PA2MOD1	PA1MOD1	PA0MOD1		0x0F
PAMS2	PA Mode Select 2	0x0E	PA7MOD2	PA6MOD2	PA5MOD2	PA4MOD2	PA3MOD2	PA2MOD2	PA1MOD2	PA0MOD2		0x00
PADO0	PA0 DOUT	0x0F	—	—	—	—	—	—	—	—	PA0DOUT	0x00
PADO1	PA1 DOUT	0x10	—	—	—	—	—	—	—	—	PA1DOUT	0x00
PADO2	PA2 DOUT	0x11	—	—	—	—	—	—	—	—	PA2DOUT	0x00
PADO3	PA3 DOUT	0x12	—	—	—	—	—	—	—	—	PA3DOUT	0x00
PADO4	PA4 DOUT	0x13	—	—	—	—	—	—	—	—	PA4DOUT	0x00
PADO5	PA5 DOUT	0x14	—	—	—	—	—	—	—	—	PA5DOUT	0x00
PADO6	PA6 DOUT	0x15	—	—	—	—	—	—	—	—	PA6DOUT	0x00

PAD07	PA7 DOUT	0x16	—	—	—	—	—	—	—	PA7DOUT	0x00
PAMSK	PA Mask	0x17	PA7MSK	PA6MSK	PA5MSK	PA4MSK	PA3MSK	PA2MSK	PA1MSK	PA0MSK	0x00
PADOUT	PA DOUT	0x18	PA7DOUT	PA6DOUT	PA5DOUT	PA4DOUT	PA3DOUT	PA2DOUT	PA1DOUT	PA0DOUT	0x00
PAPIN	PA Pin	0x19	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	0x00
PBCTRL0	PB Control 0	0x1A	PB7CTL0	PB6CTL0	PB5CTL0	PB4CTL0	PB3CTL0	PB2CTL0	PB1CTL0	PB0CTL0	0x07
PBCTRL1	PB Control 1	0x1B	PB7CTL1	PB6CTL1	PB5CTL1	PB4CTL1	PB3CTL1	PB2CTL1	PB1CTL1	PB0CTL1	0x00
PBMS0	PB Mode Select 0	0x1E	PB7MOD0	PB6MOD0	PB5MOD0	PB4MOD0	PB3MOD0	PB2MOD0	PB1MOD0	PB0MOD0	0x00
PBMS1	PB Mode Select 1	0x1F	PB7MOD1	PB6MOD1	PB5MOD1	PB4MOD1	PB3MOD1	PB2MOD1	PB1MOD1	PB0MOD1	0x00
PBMS2	PB Mode Select 2	0x20	PB7MOD2	PB6MOD2	PB5MOD2	PB4MOD2	PB3MOD2	PB2MOD2	PB1MOD2	PB0MOD2	0x00
PBDO0	PB0 DOUT	0x21	—	—	—	—	—	—	—	PB0DOUT	0x00
PBDO1	PB1 DOUT	0x22	—	—	—	—	—	—	—	PB1DOUT	0x00
PBDO2	PB2 DOUT	0x23	—	—	—	—	—	—	—	PB2DOUT	0x00
PBDO3	PB3 DOUT	0x24	—	—	—	—	—	—	—	PB3DOUT	0x00
PBDO4	PB4 DOUT	0x25	—	—	—	—	—	—	—	PB4DOUT	0x00
PBDO5	PB5 DOUT	0x26	—	—	—	—	—	—	—	PB5DOUT	0x00
PBDO6	PB6 DOUT	0x27	—	—	—	—	—	—	—	PB6DOUT	0x00
PBDO7	PB7 DOUT	0x28	—	—	—	—	—	—	—	PB7DOUT	0x00
PBMSK	PB Mask	0x29	PB7MSK	PB6MSK	PB5MSK	PB4MSK	PB3MSK	PB2MSK	PB1MSK	PB0MSK	0x00
PBDOUT	PB DOUT	0x2A	PB7DOUT	PB6DOUT	PB5DOUT	PB4DOUT	PB3DOUT	PB2DOUT	PB1DOUT	PB0DOUT	0x00
PBPIN	PB Pin	0x2B	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	0x00
PCCTRL0	PC Control 0	0x2C	PC7CTL0	PC6CTL0	PC5CTL0	PC4CTL0	PC3CTL0	PC2CTL0	PC1CTL0	PC0CTL0	0x00
PCCTRL1	PC Control 1	0x2D	PC7CTL1	PC6CTL1	PC5CTL1	PC4CTL1	PC3CTL1	PC2CTL1	PC1CTL1	PC0CTL1	0x00
PCMS0	PC Mode Select 0	0x30	PC7MOD0	PC6MOD0	PC5MOD0	PC4MOD0	PC3MOD0	PC2MOD0	PC1MOD0	PC0MOD0	0x00
PCMS1	PC Mode Select 1	0x31	PC7MOD1	PC6MOD1	PC5MOD1	PC4MOD1	PC3MOD1	PC2MOD1	PC1MOD1	PC0MOD1	0x00
PCMS2	PC Mode Select 2	0x32	PC7MOD2	PC6MOD2	PC5MOD2	PC4MOD2	PC3MOD2	PC2MOD2	PC1MOD2	PC0MOD2	0x00
PCD00	PC0 DOUT	0x33	—	—	—	—	—	—	—	PC0DOUT	0x00
PCD01	PC1 DOUT	0x34	—	—	—	—	—	—	—	PC1DOUT	0x00
PCD02	PC2 DOUT	0x35	—	—	—	—	—	—	—	PC2DOUT	0x00
PCD03	PC3 DOUT	0x36	—	—	—	—	—	—	—	PC3DOUT	0x00
PCD04	PC4 DOUT	0x37	—	—	—	—	—	—	—	PC4DOUT	0x00
PCD05	PC5 DOUT	0x38	—	—	—	—	—	—	—	PC5DOUT	0x00
PCD06	PC6 DOUT	0x39	—	—	—	—	—	—	—	PC6DOUT	0x00
PCD07	PC7 DOUT	0x3A	—	—	—	—	—	—	—	PC7DOUT	0x00
PCMSK	PC Mask	0x3B	PC7MSK	PC6MSK	PC5MSK	PC4MSK	PC3MSK	PC2MSK	PC1MSK	PC0MSK	0x00
PCDOUT	PC DOUT	0x3C	PC7DOUT	PC6DOUT	PC5DOUT	PC4DOUT	PC3DOUT	PC2DOUT	PC1DOUT	PC0DOUT	0x00
PCPIN	PC Pin	0x3D	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	0x00
PDCTRL0	PD Control 0	0x3E	PD7CTL0	PD6CTL0	PD5CTL0	PD4CTL0	PD3CTL0	PD2CTL0	PD1CTL0	PD0CTL0	0x00
PDCTRL1	PD Control 1	0x3F	PD7CTL1	PD6CTL1	PD5CTL1	PD4CTL1	PD3CTL1	PD2CTL1	PD1CTL1	PD0CTL1	0x00
PDMS0	PD Mode Select 0	0x42	PD7MOD0	PD6MOD0	PD5MOD0	PD4MOD0	PD3MOD0	PD2MOD0	PD1MOD0	PD0MOD0	0x00
PDMS1	PD Mode Select 1	0x43	PD7MOD1	PD6MOD1	PD5MOD1	PD4MOD1	PD3MOD1	PD2MOD1	PD1MOD1	PD0MOD1	0x00
PDMS2	PD Mode Select 2	0x44	PD7MOD2	PD6MOD2	PD5MOD2	PD4MOD2	PD3MOD2	PD2MOD2	PD1MOD2	PD0MOD2	0x00
PDD00	PD0 DOUT	0x45	—	—	—	—	—	—	—	PDD0DOUT	0x00
PDD01	PD1 DOUT	0x46	—	—	—	—	—	—	—	PDD1DOUT	0x00
PDD02	PD2 DOUT	0x47	—	—	—	—	—	—	—	PDD2DOUT	0x00
PDD03	PD3 DOUT	0x48	—	—	—	—	—	—	—	PDD3DOUT	0x00
PDD04	PD4 DOUT	0x49	—	—	—	—	—	—	—	PDD4DOUT	0x00
PDD05	PD5 DOUT	0x4A	—	—	—	—	—	—	—	PDD5DOUT	0x00
PDD06	PD6 DOUT	0x4B	—	—	—	—	—	—	—	PDD6DOUT	0x00
PDD07	PD7 DOUT	0x4C	—	—	—	—	—	—	—	PDD7DOUT	0x00
PDMSK	PD Mask	0x4D	PD7MSK	PD6MSK	PD5MSK	PD4MSK	PD3MSK	PD2MSK	PD1MSK	PD0MSK	0x00
PDDOUT	PD DOUT	0x4E	PD7DOUT	PD6DOUT	PD5DOUT	PD4DOUT	PD3DOUT	PD2DOUT	PD1DOUT	PD0DOUT	0x00
PDPIN	PD Pin	0x4F	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PDO	0x00
TMRSTAL	Timer Stall	0x50	—	—	—	—	—	—	TMR2ST	TMR1ST	TMR0ST
RAMCONF	RAM Config.	0x51	MS				MSE				DVS
Clock Controller Base 0xE200											
CLKEN	CK Enable	0x00	—	—	—	XTALSEL	—	—	LSRCEN	HSRCEN	XTALEN
CLKSTB	CK Stable	0x01	—	—	—	—	—	—	LSRCSTB	HSRCSTB	XTALSTB
CLKSEL	CK Selection	0x02	TMR2SRC	TMR1SRC	TMROSRC	EINTSRC	RTCSRC	PMUSRC	SYSSRC		
HPBCLKC	HP. Bus CK Contr.	0x03	—	—	—	—	FMCEN	PFBEN	HPBEN	MCUEN	0x07
PFBCLKC0	PF. Bus CK Contr. 0	0x04	UARTEN	I2CEN	WDTEN	RTCEN	—	LCMEN	ANAEEN	SDMEN	0x00
PFBCLKC1	PF. Bus CK Contr. 1	0x05	PDEN	PCEN	PBEN	PAEN	SPIEN	TMR2EN	TMR1EN	TMR0EN	0x00
PFBCLKC2	PF. Bus CK Contr. 2	0x06	—	—	—	—	CAPEN	MFAEN	EINTEN	0x00	
SYSDIV	System CK Div.	0x07	PFB_N				MCU_N				0x00
PFBDIV0	PF. Bus CK Div. 0	0x08	TMR0_N		—	—	—	SDM_N			
PFBDIV1	PF. Bus CK Div. 1	0x09	—	—	—	—	TMR2_N	—	TMR1_N	—	0x00
PMCON	Power Mode	0x0A	—	—	—	—	—	—	—	PMCON	0x00
CLKTRIM	CK Trim	0x10	HSRCH		HSRCL						0x00
Interrupt Controller Base 0xE400											
GINTMSK	Global INT. Mask	0x00	—	—	—	—	—	—	—	GINTEN	0x00
EINTCTRL	EINT. Control	0x01	EINT3CTL		EINT2CTL		EINT1CTL		EINTOCTL		
EINTEN	EINT. Enable	0x02	—	—	—	—	EINT3EN	EINT2EN	EINT1EN	EINTOEN	0x00
DBCTRL	EINT Deb. Control	0x03	—	—	—	—	DBSAM/PC				
EINTSTAT	EINT Status	0x04	—	—	—	—	EINT3F	EINT2F	EINT1F	EINTOF	0x00
INTSTAT0	Peri. INT. STAT 0	0x05	WDTINTF	RTCINTF	SDMINTF	—	EINT3F	EINT2F	EINT1F	EINTOF	0x00
INTSTAT1	Peri. INT. STAT 1	0x06	—	SPINTF	UARTINTF	I2CINTF	—	TMR2INTF	TMR1INTF	TMR0INTF	0x00
IRQNUM	IRQ Number	0x07	—	—	—	—	IRQNUM				
IRQCLR	IRQ Clear	0x08	—	—	—	—	—	—	—	IRQCLR	0x00
Delta Sigma ADC Base 0xE600											
RAWL	Raw Data L	0x00	RAWL								
RAWM	Raw Data M	0x01	RAWM								
RAWH	Raw Data H	0x02	RAWH								
CLBL	Calibration Data L	0x03	CLBL								
CLBM	Calibration Data M	0x04	CLBM								
CLBH	Calibration Data H	0x05	CLBH								
SDMGAINL	Sensor Clb. Gain L	0x06	SDMGAINL								
SDMGAINM	Sensor Clb. Gain M	0x07	SDMGAINM								
SDMGAINH	Sensor Clb. Gain H	0x08	SDMGAINH								

SDMOSL	Sensor Clb. OS L	0x09	S_CLB_OSL										0x00							
SDMOSM	Sensor Clb. OS M	0x0A	S_CLB_OSM										0x00							
SDMOSH	Sensor Clb. OS H	0x0B	S_CLB_OSH										0x00							
SDMOFL	Sensor Clb. OF L	0x0C	S_CLB_OFL										0x00							
SDMOFM	Sensor Clb. OF M	0x0D	S_CLB_OFM										0x00							
SDMOFH	Sensor Clb. OF H	0x0E	S_CLB_OFH										0x00							
TEMPGAINL	Temp. Clb. Gain L	0x0F	T_CLB_GAINL										0x00							
TEMPGAINM	Temp. Clb. Gain M	0x10	T_CLB_GAINM										0x00							
TEMPGAINH	Temp. Clb. Gain H	0x11	T_CLB_GAINH										0x00							
TEMPPOS	Temp. Clb. OS L	0x12	T_CLB_OSL										0x00							
TEMPOSM	Temp. Clb. OS M	0x13	T_CLB_OSM										0x00							
TEMPOSH	Temp. Clb. OS H	0x14	T_CLB_OSH										0x00							
TEMPOFL	Temp. Clb. OF L	0x15	T_CLB_OFL										0x00							
TEMPOFM	Temp. Clb. OF M	0x16	T_CLB_OFM										0x00							
TEMPOFH	Temp. Clb. OF H	0x17	T_CLB_OFH										0x00							
OSR	Over-Sampling	0x18	—	—	—	—	OSR				0x00									
INMUX	Input Mux	0x19	ENMUXS	—	VINLMUX				VINHMUX				0x00							
RMUX	Refer. Mux	0x1A	ENMUXR	—	—	—	VRLMUX				VRHMUX			0x00						
PGASET	Enable Set	0x1B	ENBUFCFH	VRBUF	ENPGACH	INBUF	—	—	PGAGN				0x00							
ENCFG	Config	0x1C	ENADC	ENADCCH	VRGN				ADCGN				0x00							
DCSET	DC Set	0x1D	—	—	—	—	—	—	DCSET				0x00							
CONFIG	Config. Set	0x1E	—	—	FCHSEL	FTCHK	—	—	ENDEM	ENNSNSCH	ENTMPSNS	0x00								
INTSTAT	INT. Status	0x1F	INTF	—	—	—	—	—	—	—	INTEN	0x00								
TEST	Test Set	0x80	—	—	—	—	CALDVDC	INCH1	INCH0	INSC	0x00									
Analog Controller Base 0xE800																				
COMPFCFG	Comp. Config.	0x00	CMPPHYS				CMPTH		CMPIVTH	CMPPHEN	CMPPREN	0x00								
COMPRES	Comp. Result	0x01	—	—	—	—	—	—	—	—	CMPOUT	0x00								
LVCFCFG	Low Volt. Config.	0x02	LVDF	LVDLV				LVRLV		LVDEN	LVREN	0x00								
LVDIEN	LVD Interrupt En.	0x03	—	—	—	—	—	—	—	—	LVDIEN	0x00								
PWCFG	Power Config.	0x04	—	ENOPAMP	ENBODN	ENBODP	ENPDDET	ENVCM	ENLDOA	ENBIAS	0x00									
IGENCTRL	Cur. Gen. Contr.	0x05	—	PSW				DAC2N	DAC1N	DAC2P	DAC1P	0x00								
IGEN1	Cur. Gen. En1.	0x06	ENIDAC1	IDAC1										0x00						
IGEN2	Cur. Gen. En2	0x07	ENIDAC2	IDAC2										0x00						
IGENTRIM1	Cur. Gen. Trim 1	0x08	IDAC1TR										0x00							
IGENTRIM2	Cur. Gen. Trim 2	0x09	IDAC2TR										0x00							
BGTRIM	BG Trim	0x0A	ENBGTR	—	—	BG_TRIM										0x00				
Real-Time Clock Base 0xEAO0														0x00						
CNTSEC	Second Counter	0x00	—	—	CNTSEC				CNTMIN				0x00							
CNTMIN	Minute Counter	0x01	—	—	CNTMIN				CNTHOUR				0x00							
CNTHOUR	Hour Counter	0x02	—	—	—	CNTHOUR				CNTDAY				0x00						
CNTDAY	Day Counter	0x03	—	—	—	CNTDAY				ALMSEC				0x00						
ALMSEC	Second Alarm	0x04	—	—	ALMSEC				ALMMIN				0x00							
ALMMIN	Minute Alarm	0x05	—	—	ALMMIN				ALMHOUR				0x00							
ALMHOUR	Hour Alarm	0x06	—	—	—	ALMHOUR				RTCEN				0x00						
RTCCTRL	RTC Control	0x07	—	SEC1EN	MIN1EN	HOR1EN	DAY1EN	ALM1EN	ALMWEN	RTCTEN	0x00									
RTCSTAT	RTC Status	0x08	—	SEC1NTF	MIN1NTF	HOR1NTF	DAY1NTF	ALM1NTF	0x00				0x00							
RTCWDONE	RTC Write Done	0x09	—	—	—	—	—	—	—	—	WDONE	0x00								
Watchdog Base 0xEC00														0x00						
WDTCTRL0	WDT Control 0	0x00	—	RSTTIME				—	INTTIME				0x00							
WDTCTRL1	WDT Control 1	0x01	—	—	—	—	RSTEN	INTEN	CLKSEL	WDTEN	0x00									
RESTART	Restart	0x02	0x5A										0x5A							
WRPROT	Write Protect	0x03	0xA5										0xA5							
STATUS	Status	0x04	—	—	—	—	—	—	—	—	—	WDTINTF	0x00							
I2C Base 0xEE00														0x00						
HWCFG	HW FIFO Config.	0x00	—	—	—	—	—	—	FIFOSIZE				0x00							
OSCRCTRL	Over-Samp. Rate	0x01	—	—	—	—	OSCR				0x00									
DATA_DLL	Receive Buffer	0x02	RBR										0x00							
	Transmitter Holding		THR																	
	Div. LSB		DLL																	
IER_DLM	Interrupt Enable	0x03	—	—	—	—	EMS1	ELSI	ETHE1	ERBI	0x00									
	Div. MSB		DLM										0x00							
IIR_FCR	Interrupt Iden.	0x04	FIFOED	FIFOED	—	—	INTRID				0x00									
	FIFO Control		RFIFOT	RFIFOT	TFIFOT	TFIFOT	—	TFIFORST	RFIFORST	FIFOE	0x00									
LINECTRL	Line Control	0x05	DLAB	BC	SPS	EPS	PEN	STB	WLS				0x00							
MODMCFG	Modem Control	0x06	—	—	AFCE	LOOP	—	—	RTS	—	—	DR	0x00							
LINESTAT	Line Status	0x07	ERRF	TEMF	THEF	LBREAK	FERR	PERR	OERR	DR	0x00									
MODMSTAT	Modem Status	0x08	—	—	—	CTS	—	—	—	DCTS	0x00									
LCD Controller Base 0xF200														0x00						
LCMCTRL0	LCM Control 0	0x00	—	ENBUF	FREQ	LEVEL	VCTR				0x00									
LCMCTRL1	LCM Control 1	0x01	—	—	—	—	—	—	—	—	LCMEN	0x00								
SEQBUFO0	Frame Buffer 00	0x10	—	—	—	—	FRAMEBUFO0				0x00									

SEQBUFO1	Frame Buffer 01	0x11	—	—	—	—	FRAMEBUFO1	0x00			
SEQBUFO2	Frame Buffer 02	0x12	—	—	—	—	FRAMEBUFO2	0x00			
SEQBUFO3	Frame Buffer 03	0x13	—	—	—	—	FRAMEBUFO3	0x00			
SEQBUFO4	Frame Buffer 04	0x14	—	—	—	—	FRAMEBUFO4	0x00			
SEQBUFO5	Frame Buffer 05	0x15	—	—	—	—	FRAMEBUFO5	0x00			
SEQBUFO6	Frame Buffer 06	0x16	—	—	—	—	FRAMEBUFO6	0x00			
SEQBUFO7	Frame Buffer 07	0x17	—	—	—	—	FRAMEBUFO7	0x00			
SEQBUFO8	Frame Buffer 08	0x18	—	—	—	—	FRAMEBUFO8	0x00			
SEQBUFO9	Frame Buffer 09	0x19	—	—	—	—	FRAMEBUFO9	0x00			
SEQBUFO10	Frame Buffer 10	0x1A	—	—	—	—	FRAMEBUFO10	0x00			
SEQBUFO11	Frame Buffer 11	0x1B	—	—	—	—	FRAMEBUFO11	0x00			
SEQBUFO12	Frame Buffer 12	0x1C	—	—	—	—	FRAMEBUFO12	0x00			
SEQBUFO13	Frame Buffer 13	0x1D	—	—	—	—	FRAMEBUFO13	0x00			
SEQBUFO14	Frame Buffer 14	0x1E	—	—	—	—	FRAMEBUFO14	0x00			
SEQBUFO15	Frame Buffer 15	0x1F	—	—	—	—	FRAMEBUFO15	0x00			
SEQBUFO16	Frame Buffer 16	0x20	—	—	—	—	FRAMEBUFO16	0x00			
SEQBUFO17	Frame Buffer 17	0x21	—	—	—	—	FRAMEBUFO17	0x00			
SEQBUFO18	Frame Buffer 18	0x22	—	—	—	—	FRAMEBUFO18	0x00			
SEQBUFO19	Frame Buffer 19	0x23	—	—	—	—	FRAMEBUFO19	0x00			
Capture Base 0xF400											
PRESCALE	Pre-scale	0x00	PRESCALE					0x00			
LPFSEL	Filter Num. Sel.	0x01	CAP3LPF	CAP2LPF	CAP1LPF	CAP0LPF		0x00			
MODE	Mode	0x02	CAP3MODE	CAP2MODE	CAP1MODE	CAP0MODE		0x00			
INTEN	Interrupt Enable	0x03	CAP3OEN	CAP3IEN	CAP2OEN	CAP2IEN	CAP1OEN	CAP1IEN			
CAPCTRL	CAP Control	0x04	CAP3EN	CAP2EN	CAP1EN	CAP0EN	—	—			
CAP0CNTL	CAP0 Counter Low	0x06	CAP0CNTL								
CAP0CNTH	CAP0 Counter High	0x07	CAP0CNTH								
CAP1CNTL	CAP1 Counter Low	0x08	CAP1CNTL								
CAP1CNTH	CAP1 Counter High	0x09	CAP1CNTH								
CAP2CNTL	CAP2 Counter Low	0x0A	CAP2CNTL								
CAP2CNTH	CAP2 Counter High	0x0B	CAP2CNTH								
CAP3CNTL	CAP3 Counter Low	0x0C	CAP3CNTL								
CAP3CNTH	CAP3 Counter High	0x0D	CAP3CNTH								
CAPINTF	CAP Interrupt Flag	0x0F	CAP3OF	CAP3F	CAP2OF	CAP2F	CAP1OF	CAP1F			
Timer 0 Base 0xF600 / Timer 1 Base 0xF800 / Timer 2 Base 0xFA00											
INTEN	INT. Enable	0x00	CH1EN3	CH1EN2	CH1EN1	CH1ENO	CHOIEN3	CHOIEN2			
INTSTAT	INT. Status	0x01	CH1INF3	CH1INF2	CH1INF1	CH1INFO	CHOINF3	CHOINF2			
CHEN	Channel Enable	0x02	CH1TEN3/CH1PEN	CH1TEN2	CH1TEN1	CH1TENO	CHOTEN3/CHOPEN	CHOTEN2			
CHOCTRL	CH0 Control	0x03	—	—	—	PWMMPRK	PWMMPOL	CHMODE			
CH1CTRL	CH1 Control	0x04	—	—	—	PWMMPRK	PWMMPOL	CHMODE			
CHORLO	CH0 Reload 0	0x05	CHORLO								
CHORL1	CH0 Reload 1	0x06	CHORL1								
CHORL2	CH0 Reload 2	0x07	CHORL2								
CHORL3	CH0 Reload 3	0x08	CHORL3								
CH1RLO	CH1 Reload 0	0x09	CH1RLO								
CH1RL1	CH1 Reload 1	0x0A	CH1RL1								
CH1RL2	CH1 Reload 2	0x0B	CH1RL2								
CH1RL3	CH1 Reload 3	0x0C	CH1RL3								
CHOCNTO	CH0 Counter 0	0x0D	CHOCNTO								
CHOCNT1	CH0 Counter 1	0x0E	CHOCNT1								
CHOCNT2	CH0 Counter 2	0x0F	CHOCNT2								
CHOCNT3	CH0 Counter 3	0x10	CHOCNT3								
CH1CNT0	CH1 Counter 0	0x11	CH1CNT0								
CH1CNT1	CH1 Counter 1	0x12	CH1CNT1								
CH1CNT2	CH1 Counter 2	0x13	CH1CNT2								
CH1CNT3	CH1 Counter 3	0x14	CH1CNT3								
SPI Base 0xFC00											
TRNFMTO	Transfer Format 0	0x00	—	—	—	MOSIBID	LSB	SLV MODE			
TRNFM1	Transfer Format 1	0x01	ADRLEN		—	DATLEN					
TRNCTRL0	Transfer Control 0	0x02	RTRNCNT								
TRNCTRL1	Transfer Control 1	0x03	WTRNCNT			TOKENVU	—	—			
TRNCTRL2	Transfer Control 2	0x04	—	—	TOKENEN	WTRNCNT					
TRNCTRL3	Transfer Control 3	0x05	—	—	ADREN	—	TRNCNT				
SPICMD	SPI Command	0x06	CMD								
SPIADRO	SPI Address 0	0x07	SPIADRO								
SPIADR1	SPI Address 1	0x08	SPIADR1								
SPIADR2	SPI Address 2	0x09	SPIADR2								
SPIDATA	SPI Data	0x0A	SPIDAT								
SPICTRLO	SPI Control 0	0x0B	—	—	—	—	TFIFORST	RFIFORST			
SPICTRL1	SPI Control 1	0x0C	—	—	—	—	SPIIRST				
SPICTRL2	SPI Control 2	0x0D	—	—	—	—	RTHRCV				
SPISTATO	SPI Status 0	0x0E	—	—	—	—	TTHTRN				
SPISTAT1	SPI Status 1	0x0F	RFUL	REMP	—	RFIFONUM					
SPISTAT2	SPI Status 2	0x10	TFUL	TEMP	—	TFIFONUM					
INTEN	INT. Enable	0x11	—	—	SLVCMDIEN	ENDTEN	TFIFOEN	RFIFOEN			
INTSTAT	INT. Status	0x12	—	—	SLVCMDFINTF	ENDTINTF	TFIFOINTF	RFIFOINTF			
INTFTIM0	Interface Timing 0	0x13	SCLKDIV								
INTFTIM1	Interface Timing 1	0x14	—	—	CS2CLK	CSHT					
SLVSTAT0	Slave Status 0	0x15	USERSTAT0								
SLVSTAT1	Slave Status 1	0x16	USERSTAT1								
SLVSTAT2	Slave Status 2	0x17	—	—	—	—	URRUN	ORRUN			
RCVCNT0	Recev. Counter 0	0x18	RCVCNTL								
RCVCNT1	Recev. Counter 1	0x19	—	—	—	—	—	RCVCNTH			
TSMCNT0	Trans. Counter 0	0x1A	TRNCNTL								
TSMCNT1	Trans. Counter 1	0x1B	—	—	—	—	—	TRNCNTH			
SPICFG	SPI Configuration	0x1C	—	—	TFIFOSIZE	—	—	RFIFOSIZE			

Multi-Function ALU Base 0xFE00												
MULCTRL	Multiply Control	0x00	-	-	-	-	-	-	-	SIGN	0x00	

MULPO	Multiplier 0	0x01	MULTIPLIER0					0x00
MULP1	Multiplier 1	0x02	MULTIPLIER1					0x00
MULCO	Multiplicand 0	0x03	MULTIPLICAND0					0x00
MULC1	Multiplicand 1	0x04	MULTIPLICAND1					0x00
MULPROD0	Multiply Product 0	0x05	MULPRODUCT0					0x00
MULPROD1	Multiply Product 1	0x06	MULPRODUCT1					0x00
MULPROD2	Multiply Product 2	0x07	MULPRODUCT2					0x00
MULPROD3	Multiply Product 3	0x08	MULPRODUCT3					0x00
FPCTRL	FP. Control	0x09	—	—	—	—	ROUND	0x00
FPMULPO	FP. Multiplier 0	0x0A	FPMULTIPLIER0					0x00
FPMULP1	FP. Multiplier 1	0x0B	FPMULTIPLIER1					0x00
FPMULP2	FP. Multiplier 2	0x0C	FPMULTIPLIER2					0x00
FPMULP3	FP. Multiplier 3	0x0D	FPMULTIPLIER3					0x00
FPMULC0	FP. Multiplicand 0	0x0E	FPMULTICAND0					0x00
FPMULC1	FP. Multiplicand 1	0x0F	FPMULTICAND1					0x00
FPMULC2	FP. Multiplicand 2	0x10	FPMULTICAND2					0x00
FPMULC3	FP. Multiplicand 3	0x11	FPMULTICAND3					0x00
FPPROD0	FP. Mul. Product 0	0x12	FPMULPRODUCT0					0x00
FPPROD1	FP. Mul. Product 1	0x13	FPMULPRODUCT1					0x00
FPPROD2	FP. Mul. Product 2	0x14	FPMULPRODUCT2					0x00
FPPROD3	FP. Mul. Product 3	0x15	FPMULPRODUCT3					0x00
FPSTAT	FP. Status	0x16	FPSTAT					0x00
LOGIN0	Log2 Input 0	0x17	LOGINPUT0					0x00
LOGIN1	Log2 Input 1	0x18	LOGINPUT1					0x00
LOGIN2	Log2 Input 2	0x19	LOGINPUT2					0x00
LOGIN3	Log2 Input 3	0x1A	LOGINPUT3					0x00
LOGOUT0	Log2 Output 0	0x1B	LOGOUTPUT0					0x00
LOGOUT1	Log2 Output 1	0x1C	LOGOUTPUT1					0x00
LOGOUT2	Log2 Output 2	0x1D	LOGOUTPUT2					0x00
LOGOUT3	Log2 Output 3	0x1E	LOGOUTPUT3					0x00
LOGSTAT	Log2 Status	0x1F	LOGSTAT					0x00

Table 6.2-2 FE81 Series Peripheral Register Map Table

6.3 External Vectored Interrupt Controller (EVIC)

6.3.1 Overview

The 8051 core supports external vectored interrupt controller (EVIC), which is used where the interrupts are prioritized outside the 8051 core using external interrupt control logic. When an interrupt happens, the program flow will be directed to the interrupt handler that manipulates the interrupt event. To speed up the interrupt handling based on the importance of the interrupt event, an interrupt vectored table is provided to dispatch the interrupt according to the interrupt type. Each interrupt is taken according to the content of the interrupt vectored table, which is called entry point, to reducing the software effort of dispatching the interrupt handling jobs to interrupt handler. Section 6.3.2 describes the interrupt entry point and peripheral interrupt map.

The EVIC supports fixed interrupt priority levels for each hardware interrupt source ranging from 0 (highest priority) to 15 (lowest priority) as defined by IRQ number, that is, several interrupts are activated “at the same time” with the highest priority interrupt being triggered to execute related interrupt handler.

The EVIC supports nested interrupt mechanism, which means the program flow of an interrupt handler executed will be preempted by another interrupt being activated no matter the priority level. User can use global interrupt enable flag to disable the mechanism as described in section 6.3.3.

The FE81 series supports several low power modes with different current topologies according to different application requirements. Once a low power mode is entered, system is able to be wakeup by interrupts or resets.

Features of EVIC

- Priority level triggered Interrupt mechanism
- Nested interrupt mechanism controlled by global interrupt enable flag
- Recovery from low power mode by interrupts

6.3.2 FE81 Series Interrupt Entry Point and Interrupt Map

The FE81 series with 8051 core support 16 interrupts. Table 6.3-1 lists the interrupt model supported by FE81 series. Note that an entry point can be mapped to multiple interrupt types.

Offset	Entry Point	Supported Interrupt Types
0 ~ 15	Interrupt (IRQ0 ~ IRQ15)	Hardware Interrupts

Table 6.3-1 Interrupt Vectored Table

Table 6.3-2 depicts all the peripheral interrupt numbers with the priority level defined by the sequence of the IRQ number. External interrupts (ext0_int ~ ext3_int) have the highest priority levels than the other peripherals with the application requirements response to external events.

IRQ Num.	Interrupt Name	Description
0	ext0_int	External Interrupt From PB3
1	ext1_int	External Interrupt From PA5
2	ext2_int	External Interrupt From PA3
3	ext3_int	External Interrupt From PA2
4	Reserved	Reserved
5	sdm_int	SDM Interrupt
6	rtc_int	RTC Interrupt
7	wdt_int	WDT Interrupt
8	tmr0_int	TMR0 Interrupt
9	tmr1_int	TMR1 Interrupt
10	tmr2_int	TMR2 Interrupt
11	i2c_int	I2C Interrupt
12	uart_int	UART Interrupt
13	spi_int	SPI Interrupt
14	cap_int	Capture Interrupt
15	Reserved	Reserved

Table 6.3-2 Interrupt Map of FE81 Series

6.3.3 FE81 Series Interrupt Priority

Each peripheral has its own interrupt enable flag, and the interrupt signal of each peripheral is activated only when interrupt enable flag is set. The priority level of each peripheral is shown in Figure 6.3-1. Four external interrupts have the highest priority levels and SPI has the lowest priority level. Not only the interrupt enable flag should be set in advance, the global interrupt enable flag (GINTEN in GINTMASK Register) must also be set to activate the interrupt signal, and after interrupt handler is executed, the global interrupt enable flag (GINTEN) is cleared automatically for prohibiting another interrupt request. User can re-set the global interrupt flag at the beginning of interrupt service routine (ISR) to enable nested interrupt mechanism requested by another peripherals.

Priority Level

EINT0	EINT0F	EINT0EN	GIEN	03H
EINT1	EINT1F	EINT1EN	GIEN	0BH
EINT2	EINT2F	EINT2EN	GIEN	13H
EINT3	EINT3F	EINT3EN	GIEN	1BH
LVD	LVDF	LVDIEN	GIEN	23H
SDM	SDMF	SDMIEN	GIEN	2BH
RTC	RTCF	RTCIEN	GIEN	33H
WDT	WDTF	WDTIEN	GIEN	3BH
TMRO	TMROF	TMROIEN	GIEN	43H
TMR1	TMR1F	TMR1EN	GIEN	4BH
TMR2	TMR2F	TMR2EN	GIEN	53H
I2C	I2CF	I2CIEN	GIEN	5BH
UART	UARTF	UARTIEN	GIEN	63H
SPI	SPIF	SPIIEN	GIEN	6BH
CAP	CAPF	CAPIEN	GIEN	73H
			GIEN	7BH

Figure 6.3-1 FE81 Series Interrupt Priority Level

Steps of nested interrupt triggered sequence :

1. Set corresponding interrupt enable flag of each peripheral
2. Set global interrupt enable flag (GINTEN flag in GINTMASK Register)
3. Enter ISR according to priority level → global interrupt enable flag is cleared automatically by hardware
4. Enable global interrupt enable flag for nested interrupt at the beginning of ISR
5. ISR executed or be preempted by another interrupt request

Steps of un-nested interrupt triggered sequence :

1. Set corresponding interrupt enable flag of each peripheral
2. Set global interrupt enable flag (GINTEN flag in GINTMASK Register)
3. Enter ISR according to priority level → global interrupt enable flag is cleared automatically by hardware
4. ISR executed
5. Enable global interrupt enable flag at the end of the ISR or main application code

6.3.4 External Interrupt

The FE81 series supports four external interrupts which can be used for external events. For example, a switch button to trigger the display of temperature of thermometer applications. The four external interrupt pins are pin-shared with GPIO pins as shown below :

GPIO	External Interrupt Pin
PB3	External interrupt 0
PA5	External interrupt 1
PA3	External interrupt 2
PA2	External interrupt 3

The external interrupt supports four edge type triggered interrupts, which are falling and low, rising, falling, and rising and falling. The external interrupt also supports hardware debounce feature as the external pulse signal will be sampled by continuous two debounce sample clocks. Section 6.3.5 depicts the external interrupt register setting. While external interrupt service routine is entered, the related external interrupt flag is cleared by software (external interrupt enable is set).

External interrupt trigger type defined in EINTCTRL Register

- Falling and low
- Rising
- Falling
- Rising and falling

External interrupt flag clear scheme

- If external interrupt enable is set
 - Be cleared by software
- If external interrupt enable is not set
 - Be cleared by software via IRQCLR flag in IRQCLR Register*1

*1 While using IRQCLR flag to clear external interrupt flag, all pending interrupts are cleared, too.

While using external interrupt as for waking up from low power “Halt mode”, the clock source of external interrupt must be selected to LSRC. Please refer to section 6.5.3 for more details.

6.3.5 Register Map and Description

Below lists external vectored interrupt controller register map. The memory base address of EVIC is 0xE400 with the offset indication of each register.

Base Address (INTC_BA) : 0xE400				
Register	Offset	RW	Description	Reset Value
GINTMSK	INTC_BA+0x00	R/W	Global Interrupt Mask Register	0x00
EINTCTRL	INTC_BA+0x01	R/W	External Interrupt Control Register	0x00
EINTEN	INTC_BA+0x02	R/W	External Interrupt Enable Register	0x00
DBCTRL	INTC_BA+0x03	R/W	External Interrupt Debounce Control Register	0x00
EINTSTAT	INTC_BA+0x04	R/W	External Interrupt Status Register	0x00
INTSTAT0	INTC_BA+0x05	R	Peripheral Interrupt Status 0 Register	0x00
INTSTAT1	INTC_BA+0x06	R	Peripheral Interrupt Status 1 Register	0x00
IRQNUM	INTC_BA+0x07	R	IRQ Number Register	0x00
IRQCLR	INTC_BA+0x08	W	IRQ Clear Register	0x00

Global Interrupt Mask Register

Register	Offset	RW	Description	Reset Value
GINTMASK	INTC_BA+0x00	R/W	Global Interrupt Mask Register	0x00

Bits	Flag	Description
[7:1]	Reserved	Reserved.
[0]	GINTEN	Global Interrupt Enable Flag This bit is set to enable global interrupt. This bit is set by software, and cleared by hardware automatically while entering interrupt service routine. GINTEN = 1, Global interrupt enabled. GINTEN = 0, Global interrupt disabled.

External Interrupt Control Register

Register	Offset	RW	Description	Reset Value
EINTCTRL	INTC_BA+0x01	R/W	External Interrupt Control Register	0x00

Bits	Flag	Description
[7:6]	EINT3CTL	External Interrupt 3 Control Flag This bit is set by software, and cleared by software. EINT3CTL = 0, Falling and low trigger mode. EINT3CTL = 1, Rising trigger mode. EINT3CTL = 2, Falling trigger mode. EINT3CTL = 3, Rising and Falling trigger mode.
[5:4]	EINT2CTL	External Interrupt 2 Control Flag This bit is set by software, and cleared by software. EINT2CTL = 0, Falling and low trigger mode. EINT2CTL = 1, Rising trigger mode. EINT2CTL = 2, Falling trigger mode. EINT2CTL = 3, Rising and Falling trigger mode.
[3:2]	EINT1CTL	External Interrupt 1 Control Flag This bit is set by software, and cleared by software. EINT1CTL = 0, Falling and low trigger mode. EINT1CTL = 1, Rising trigger mode. EINT1CTL = 2, Falling trigger mode. EINT1CTL = 3, Rising and Falling trigger mode.
[1:0]	EINT0CTL	External Interrupt 0 Control Flag This bit is set by software, and cleared by software. EINT0CTL = 0, Falling and low trigger mode. EINT0CTL = 1, Rising trigger mode. EINT0CTL = 2, Falling trigger mode. EINT0CTL = 3, Rising and Falling trigger mode.

External Interrupt Enable Register

Register	Offset	RW	Description	Reset Value
EINTEN	INTC_BA+0x02	R/W	External Interrupt Enable Register	0x00

Bits	Flag	Description
[7:4]	Reserved	Reserved.
[3]	EINT3EN	External Interrupt 3 Enable Flag This bit is set by software, and cleared by software. EINT3EN = 1, External interrupt 3 enabled. EINT3EN = 0, External interrupt 3 disabled.
[2]	EINT2EN	External Interrupt 2 Enable Flag This bit is set by software, and cleared by software. EINT2EN = 1, External interrupt 2 enabled. EINT2EN = 0, External interrupt 2 disabled.
[1]	EINT1EN	External Interrupt 1 Enable Flag This bit is set by software, and cleared by software. EINT1EN = 1, External interrupt 1 enabled. EINT1EN = 0, External interrupt 1 disabled.
[0]	EINT0EN	External Interrupt 0 Enable Flag This bit is set by software, and cleared by software. EINT0EN = 1, External interrupt 0 enabled. EINT0EN = 0, External interrupt 0 disabled.

External Interrupt Debounce Control Register

Register	Offset	RW	Description	Reset Value
DBCTRL	INTC_BA+0x03	R/W	External Interrupt Debounce Control Register	0x00

Bits	Flag	Description
[7:4]	Reserved	Reserved.
[3:0]	DBSAMPC	<p>External Interrupt Debounce Sampling Clock Number</p> <p>This bit is set by software, and cleared by software.</p> <p>If the input signal pulse width cannot be sampled by continuous two debounce cycle, the interrupt will not be triggered.</p> <p>DBSAMPC = 0, Every 1 clocks.</p> <p>DBSAMPC = 1, Every 2 clocks.</p> <p>DBSAMPC = 2, Every 4 clocks.</p> <p>DBSAMPC = 3, Every 8 clocks.</p> <p>DBSAMPC = 4, Every 16 clocks.</p> <p>DBSAMPC = 5, Every 32 clocks.</p> <p>DBSAMPC = 6, Every 64 clocks.</p> <p>DBSAMPC = 7, Every 128 clocks.</p> <p>DBSAMPC = 8, Every 256 clocks.</p>

External Interrupt Status Register

Register	Offset	RW	Description	Reset Value
EINTSTAT	INTC_BA+0x04	R/W	External Interrupt Status Register	0x00

Bits	Flag	Description
[7:4]	Reserved	Reserved.
[3]	EINT3F	External Interrupt 3 Status Flag This bit is set by hardware, and cleared by software (Write 1 to clear). User can use the flag for polling external signal if external interrupt enable is not set. EINT3F = 1, External interrupt 3 triggered. EINT3F = 0, Idle.
[2]	EINT2F	External Interrupt 2 Status Flag This bit is set by hardware, and cleared by software (Write 1 to clear). User can use the flag for polling external signal if external interrupt enable is not set. EINT2F = 1, External interrupt 2 triggered. EINT2F = 0, Idle.
[1]	EINT1F	External Interrupt 1 Status Flag This bit is set by hardware, and cleared by software (Write 1 to clear). User can use the flag for polling external signal if external interrupt enable is not set. EINT1F = 1, External interrupt 1 triggered. EINT1F = 0, Idle.
[0]	EINT0F	External Interrupt 0 Status Flag This bit is set by hardware, and cleared by software (Write 1 to clear). User can use the flag for polling external signal if external interrupt enable is not set. EINT0F = 1, External interrupt 0 triggered. EINT0F = 0, Idle.

Peripheral Interrupt Status 0 Register

Register	Offset	RW	Description	Reset Value
INTSTAT0	INTC_BA+0x05	R	Peripheral Interrupt Status 0 Register	0x00

Bits	Flag	Description
[7]	WDTINTF	Watchdog Interrupt Status Flag This bit is set by hardware, and cleared by hardware automatically. WDTINTF = 1, WDT interrupt triggered. WDTINTF = 0, Idle.
[6]	RTCINTF	RTC Interrupt Status Flag This bit is set by hardware, and cleared by hardware automatically. RTCINTF = 1, RTC interrupt triggered. RTCINTF = 0, Idle.
[5]	SDMINTF	Delta Sigma Interrupt Status Flag This bit is set by hardware, and cleared by hardware automatically. SDMINTF = 1, SDM interrupt triggered. SDMINTF = 0, Idle.
[4]	LVDINTF	LVD Interrupt Status Flag This bit is set by hardware, and cleared by hardware automatically. LVDINTF = 1, LVD interrupt triggered. LVDINTF = 0, Idle.
[3]	EINT3F	External Interrupt 0 Status Flag The same function as defined in EINTENSTAT.
[2]	EINT2F	External Interrupt 0 Status Flag The same function as defined in EINTENSTAT.
[1]	EINT1F	External Interrupt 0 Status Flag The same function as defined in EINTENSTAT.
[0]	EINT0F	External Interrupt 0 Status Flag The same function as defined in EINTENSTAT.

Peripheral Interrupt Status 1 Register

Register	Offset	RW	Description	Reset Value
INTSTAT1	INTC_BA+0x06	R	Peripheral Interrupt Status 1 Register	0x00

Bits	Flag	Description
[7]	Reserved	Reserved.
[6]	CAPINTF	CAP Interrupt Status Flag This bit is set by hardware, and cleared by hardware automatically. CAPINTF = 1, CAP interrupt triggered. CAPINTF = 0, Idle.
[5]	SPIINTF	SPI Interrupt Status Flag This bit is set by hardware, and cleared by hardware automatically. SPIINTF = 1, SPI interrupt triggered. SPIINTF = 0, Idle.
[4]	UARTINTF	UART Interrupt Status Flag This bit is set by hardware, and cleared by hardware automatically. UARTINTF = 1, UART interrupt triggered. UARTINTF = 0, Idle.
[3]	I2CINTF	I2C Interrupt Status Flag This bit is set by hardware, and cleared by hardware automatically. I2CINTF = 1, I2C interrupt triggered. I2CINTF = 0, Idle.
[2]	TMR2INTF	Timer 2 Interrupt Status Flag This bit is set by hardware, and cleared by hardware automatically. TMR2INTF = 1, Timer 2 interrupt triggered. TMR2INTF = 0, Idle.
[1]	TMR1INTF	Timer 1 Interrupt Status Flag This bit is set by hardware, and cleared by hardware automatically. TMR1INTF = 1, Timer 1 interrupt triggered. TMR1INTF = 0, Idle.
[0]	TMROINTF	Timer 0 Interrupt Status Flag This bit is set by hardware, and cleared by hardware automatically. TMROINTF = 1, Timer 0 interrupt triggered. TMROINTF = 0, Idle.

IRQ Number Register

Register	Offset	RW	Description	Reset Value
IRQNUM	INTC_BA+0x07	R	IRQ Number Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4:0]	IRQNUM	MCU IRQ Number Flag This bit is set by hardware, and cleared by hardware. The register field stores the IRQ number that 8051 core has been finished executing related peripheral interrupt service routine.

IRQ Clear Register

Register	Offset	RW	Description	Reset Value
IRQCLR	INTC_BA+0x08	W	IRQ Clear Register	0x00

Bits	Flag	Description
[7:1]	Reserved	Reserved.
[0]	IRQCLR	MCU Interrupt Clear Flag This bit is set by software, and cleared by hardware. Note that, while setting this flag, all pending interrupts are cleared. IRQCLR = 1, All pending interrupts are cleared. IRQCLR = 0, Idle.

6.4 System Manager Controller (SMU)

6.4.1 Overview

The system manager controller is responsible for system controls of the FE81 series listed as follows.

Part number identification

Part number identification indicates the part number of FE81 series. For instance, E811 is an 8051 core, 8K-byte eMTP, and 1K-byte Data SRAM product.

Reset control

The FE81 series supports several reset mechanisms that provide flexible controls for customers, which is described in section 6.4.2.

General purpose I/O (GPIO) control

The FE81 series supports five GPIO modes, which are input mode, push-pull mode, open-drain mode, internal pull-up mode, and high-impedance mode for analog I/O. The GPIO is also pin-shared with system connectivity for die area reduction

Timer stall control

User is able to use this mechanism to pause timer counting.

SRAM Configuration

Base on various operation voltage setting, SRAM should be set to different parameters.

Contact ESMT for more detail information related to SRAM configuration.

6.4.2 Reset Control

The FE81 series provides flexible reset mechanism for customers to choose the most appropriate reset usage. The FE81 series supports rich reset control, which is listed as follows.

Power on reset

The reset is issued by power on reset circuit to reset the whole chip.

Low active external RST pin

The reset is issued by the external RST pin, which is pin-shared with PB0 to reset whole chip. For example, a reset push button on the PCB board. The RST pin function should be enabled by EXTR bit in SYSRSTC Register.

Chip reset

The reset is one of the system software reset that reset the whole chip. Write CHIPR bit in SYSRSTC Register will issue chip reset.

CPU reset

The reset is one of the system software reset that reset only the 8051 core. Write CPUR bit in SYSRSTC Register will issue the CPU reset.

CPU Reset and Hold

The reset is one of the system software reset that reset and gated the operation of 8051 core. Write CPURH bit in SYSRSTC Register will issue the CPU reset and hold.

Watchdog reset (WDT)

The reset is issued by watchdog timer controller to reset the whole chip.

Low voltage reset (LVR)

The reset is issued by low voltage reset circuit to reset the whole chip.

On-chip debugging (OCD) reset

The reset is issued by DAP controller to reset the whole chip. This reset is only used for OCD control by IDE tool.

In-system programming (ISP) reset

The reset is issued by ISP controller to reset the whole chip. This reset is only used for eMTP flash memory update by on-line update GUI tool provided by ESMT.

Peripheral resets

Each peripheral has its own reset control mechanism to reset each peripheral to default state.

Table 6-4-1 lists the reset control of each register with corresponding bit field.

Reset	Register	Bit Field
Chip Reset	SYSRSTC	CHUPR : [0]
CPU Reset	SYSRSTC	CPUR : [1]
CPU Reset and Hold	SYSRSTC	CPURH : [2]
RST Pin Enable	SYSRSTC	EXTR : [3]
OCD Reset	DAPCMD	Command : 0x80
ISP Reset	ISP Command Code	Command : 0x99
SDM Reset	PERRSTC0	SDMR : [0]
ANAC Reset	PERRSTC0	ANAR : [1]
LCM Reset	PERRSTC0	LCMR : [2]
RTC Reset	PERRSTC0	RTCR : [4]
I2C Reset	PERRSTC0	I2CR : [6]
UART Reset	PERRSTC0	UARTR : [7]
Timer 0 Reset	PERRSTC1	TMR0R : [0]
Timer 1 Reset	PERRSTC1	TMR1R : [1]
Timer 2 Reset	PERRSTC1	TMR2R : [2]
SPI Reset	PERRSTC1	RSPI : [3]
MFA Reset	PERRSTC1	MFAR : [4]
CAP Reset	PERRSTC1	CAPR : [5]

Table 6.4-1 Reset Control of FE81 Series

6.4.3 General Purpose I/O

Table 6.4-2 depicts mode selection of GPIO. Each Port (PA, PB, PC, PD) has 3-byte mode selection registers for setting the IO Mode.

Mode Selection			IO Mode
PxMS2 (x = A, B, C, D)	PxMS1 (x = A, B, C, D)	PxMS0 (x = A, B, C, D)	
0	0	0	Input
0	0	1	Push-pull
0	1	0	Open-drain
0	1	1	Internal pull-up
1	0	0	High-impedance

Table 6.4-2 GPIO Mode Selection

System peripheral connectivity pins are pin-shared with GPIO pins. Figure 6.4-1 illustrates GPIO function selected by 2-byte GPIO control selection register. For instance, the GPIO function of PA0 can be selected by PACTRL1[0] and PACTRLO[0], respectively.

IO	PACTRL1	PACTRLO	IO Function	IO	PBCTRL1	PBCTRL0	IO Function	IO	PCCTRL1	PCCTRL0	IO Function	IO	PDCTRL1	PDCTRL0	IO Function
PA.0	2'b00	2'b01	GPIO MISO	PB.0	2'b00	2'b01	GPIO RST	PC.0	2'b00	2'b01	GPIO PWM4	PD.0	2'b00	2'b01	GPIO CAPINO
PA.1	2'b01	2'b10	GPIO MOSI	PB.1	2'b00	2'b01	GPIO XTAOUT	PC.1	2'b00	2'b01	GPIO PWM5	PD.1	2'b00	2'b01	GPIO CAPIN1
PA.2	2'b00	2'b01	GPIO SCLK INT3	PB.2	2'b00	2'b01	GPIO XTAIN	PC.2	2'b00	2'b01	GPIO nCTS OCD_SDA	PD.2	2'b00	2'b01	GPIO CAPIN2
PA.3	2'b00	2'b01	GPIO SS INT2	PB.3	2'b00	2'b01	GPIO INT0	PC.3	2'b00	2'b01	GPIO nRTS OCD_SCK	PD.3	2'b00	2'b01	GPIO CAPIN3
PA.4	2'b00	2'b01	GPIO SDA	PB.4	2'b00	2'b01	GPIO PWM0	PC.4	2'b00	2'b01	GPIO ISP_SDA	PD.4	2'b00	2'b01	GPIO
PA.5	2'b00	2'b01	GPIO SCL INT1	PB.5	2'b00	2'b01	GPIO PWM1	PC.5	2'b00	2'b01	GPIO ISP_SCL	PD.5	2'b00	2'b01	GPIO
PA.6	2'b00	2'b01	GPIO RXD	PB.6	2'b00	2'b01	GPIO PWM2	PC.6	2'b00	2'b01	GPIO CMPP	PD.6	2'b00	2'b01	GPIO
PA.7	2'b00	2'b01	GPIO TXD	PB.7	2'b00	2'b01	GPIO PWM3	PC.7	2'b00	2'b01	GPIO CMPPN	PD.7	2'b00	2'b01	GPIO
	2'b10	2'b11			2'b10	2'b11	SEG19		2'b10	2'b11	SEG11		2'b10	2'b11	SEG03
	2'b11				2'b11		SEG18		2'b11		SEG10		2'b11		SEG02
					2'b11		SEG17		2'b11		SEG09		2'b11		SEG01
					2'b11		SEG16		2'b11		SEG08		2'b11		SEG00
					2'b11		SEG15		2'b11		SEG07		2'b11		COM3
					2'b11		SEG14		2'b11		SEG06		2'b11		COM2
					2'b11		SEG13		2'b11		SEG05		2'b11		COM1
					2'b11		SEG12		2'b11		SEG04		2'b11		COM0

Figure 6.4-1 GPIO Control Selection

Other features of GPIO

- Mask function
- Fast bit output control

6.4.4 Register Map and Description

Table 6-5 lists the register map of system manager controller.

Base Address (SMC_BA) : 0xE000				
Register	Offset	RW	Description	Reset Value
PNID0	SMC_BA+0x00	R	Part Number Identification 0 Register	0x45
PNID1	SMC_BA+0x01	R	Part Number Identification 1 Register	0x38
PNID2	SMC_BA+0x02	R	Part Number Identification 2 Register	0x31
PNID3	SMC_BA+0x03	R	Part Number Identification 3 Register	0x31
RSTSRC	SMC_BA+0x04	R/W	Reset Source Register	0x01
SYSRSTC	SMC_BA+0x05	R/W	System Reset Control Register	0x00
PERRSTC0	SMC_BA+0x06	R/W	Peripheral Reset Control 0 Register	0x00
PERRSTC1	SMC_BA+0x07	R/W	Peripheral Reset Control 1 Register	0x00
PACTRL0	SMC_BA+0x08	R/W	PA Control 0 Register	0x00
PACTRL1	SMC_BA+0x09	R/W	PA Control 1 Register	0x00
Reserved				
Reserved				
PAMSO	SMC_BA+0x0C	R/W	PA Mode Select 0 Register	0x00
PAMS1	SMC_BA+0x0D	R/W	PA Mode Select 1 Register	0x00
PAMS2	SMC_BA+0x0E	R/W	PA Mode Select 2 Register	0x00
PADO0	SMC_BA+0x0F	R/W	PA Bit 0 Output Register	0x00
PADO1	SMC_BA+0x10	R/W	PA Bit 1 Output Register	0x00
PADO2	SMC_BA+0x11	R/W	PA Bit 2 Output Register	0x00
PADO3	SMC_BA+0x12	R/W	PA Bit 3 Output Register	0x00
PADO4	SMC_BA+0x13	R/W	PA Bit 4 Output Register	0x00
PADO5	SMC_BA+0x14	R/W	PA Bit 5 Output Register	0x00
PADO6	SMC_BA+0x15	R/W	PA Bit 6 Output Register	0x00
PADO7	SMC_BA+0x16	R/W	PA Bit 7 Output Register	0x00
PAMSK	SMC_BA+0x17	R/W	PA Data Out Write Mask Register	0x00
PADOUT	SMC_BA+0x18	R/W	PA Data Out Register	0x00
PAPIN	SMC_BA+0x19	R/W	PA PIN Value Register	0x00
PBCTRL0	SMC_BA+0x1A	R/W	PB Control 0 Register	0x00
PBCTRL1	SMC_BA+0x1B	R/W	PB Control 1 Register	0x00
Reserved				
Reserved				
PBMS0	SMC_BA+0x1E	R/W	PB Mode Select 0 Register	0x00
PBMS1	SMC_BA+0x1F	R/W	PB Mode Select 1 Register	0x00
PBMS2	SMC_BA+0x20	R/W	PB Mode Select 2 Register	0x00
PBDO0	SMC_BA+0x21	R/W	PB Bit 0 Output Register	0x00
PBDO1	SMC_BA+0x22	R/W	PB Bit 1 Output Register	0x00
PBDO2	SMC_BA+0x23	R/W	PB Bit 2 Output Register	0x00
PBDO3	SMC_BA+0x24	R/W	PB Bit 3 Output Register	0x00
PBDO4	SMC_BA+0x25	R/W	PB Bit 4 Output Register	0x00
PBDO5	SMC_BA+0x26	R/W	PB Bit 5 Output Register	0x00
PBDO6	SMC_BA+0x27	R/W	PB Bit 6 Output Register	0x00
PBDO7	SMC_BA+0x28	R/W	PB Bit 7 Output Register	0x00
PBMSK	SMC_BA+0x29	R/W	PB Data Out Write Mask Register	0x00

PBDOUT	SMC_BA+0x2A	R/W	PB Data Out Register	0x00
PBPIN	SMC_BA+0x2B	R/W	PB PIN Value Register	0x00
PCCTRL0	SMC_BA+0x2C	R/W	PC Control 0 Register	0x00
PCCTRL1	SMC_BA+0x2D	R/W	PC Control 1 Register	0x00
Reserved				
Reserved				
PCMS0	SMC_BA+0x30	R/W	PC Mode Select 0 Register	0x00
PCMS1	SMC_BA+0x31	R/W	PC Mode Select 1 Register	0x00
PCMS2	SMC_BA+0x32	R/W	PC Mode Select 2 Register	0x00
PCDO0	SMC_BA+0x33	R/W	PC Bit 0 Output Register	0x00
PCDO1	SMC_BA+0x34	R/W	PC Bit 1 Output Register	0x00
PCDO2	SMC_BA+0x35	R/W	PC Bit 2 Output Register	0x00
PCDO3	SMC_BA+0x36	R/W	PC Bit 3 Output Register	0x00
PCDO4	SMC_BA+0x37	R/W	PC Bit 4 Output Register	0x00
PCDO5	SMC_BA+0x38	R/W	PC Bit 5 Output Register	0x00
PCDO6	SMC_BA+0x39	R/W	PC Bit 6 Output Register	0x00
PCDO7	SMC_BA+0x3A	R/W	PC Bit 7 Output Register	0x00
PCMSK	SMC_BA+0x3B	R/W	PC Data Out Write Mask Register	0x00
PCDOUT	SMC_BA+0x3C	R/W	PC Data Out Register	0x00
PCPIN	SMC_BA+0x3D	R/W	PC PIN Value Register	0x00
PDCTRL0	SMC_BA+0x3E	R/W	PD Control 0 Register	0x00
PDCTRL1	SMC_BA+0x3F	R/W	PD Control 1 Register	0x00
Reserved				
Reserved				
PDMS0	SMC_BA+0x42	R/W	PD Mode Select 0 Register	0x00
PDMS1	SMC_BA+0x43	R/W	PD Mode Select 1 Register	0x00
PDMS2	SMC_BA+0x44	R/W	PD Mode Select 2 Register	0x00
PDDO0	SMC_BA+0x45	R/W	PD Bit 0 Output Register	0x00
PDDO1	SMC_BA+0x46	R/W	PD Bit 1 Output Register	0x00
PDDO2	SMC_BA+0x47	R/W	PD Bit 2 Output Register	0x00
PDDO3	SMC_BA+0x48	R/W	PD Bit 3 Output Register	0x00
PDDO4	SMC_BA+0x49	R/W	PD Bit 4 Output Register	0x00
PDDO5	SMC_BA+0x4A	R/W	PD Bit 5 Output Register	0x00
PDDO6	SMC_BA+0x4B	R/W	PD Bit 6 Output Register	0x00
PDDO7	SMC_BA+0x4C	R/W	PD Bit 7 Output Register	0x00
PDMSK	SMC_BA+0x4D	R/W	PD Data Out Write Mask Register	0x00
PDDOUT	SMC_BA+0x4E	R/W	PD Data Out Register	0x00
PDPIN	SMC_BA+0x4F	R/W	PD PIN Value Register	0x00
TMRSTAL	SMC_BA+0x50	R/W	Timer Stall Control Register	0x00
RAMCONF	SMC_BA+0x51	R/W	SRAM Configuration Register	0x02

Part Number Identification Register

Register	Offset	RW	Description	Reset Value
PNIDx	SMC_BA+(0x00 ~ 0x03)	R	Part Number Identification 0, 1, 2, 3 Register	0x45383131

Bits	Flag	Description
[7:0]	PNID0	Part Number Identification 0 Part number identification is located in this register. User can read this register for identifying which device is used.

Bits	Flag	Description
[7:0]	PNID1	Part Number Identification 1 Part number identification is located in this register. User can read this register for identifying which device is used.

Bits	Flag	Description
[7:0]	PNID2	Part Number Identification 2 Part number identification is located in this register. User can read this register for identifying which device is used.

Bits	Flag	Description
[7:0]	PNID3	Part Number Identification 3 Part number identification is located in this register. User can read this register for identifying which device is used.

Part Number	Package	Flash	Data SRAM	PNID
FE8116x		8KB	1KB	0x45383131

Reset Source Register

Register	Offset	RW	Description	Reset Value
RSTSRC	SMC_BA+0x04	R/W	Reset Source Register	0x01

Bits	Flag	Description
[7]	Reserved	Reserved.
[6]	LVR	Low Voltage Reset Source Indication Flag This bit is set by the low voltage circuit. Software writes 0 to clear this bit. LVR = 1, The reset source is from low voltage reset circuit. LVR = 0, No reset source is from low voltage reset circuit.
[5]	Reserved	Reserved.
[4]	WDT	WatchDog Timer Reset Source Indication Flag This bit is set by the “reset signal” from watchdog timer controller to indicate that the reset source is from watch dog timer controller. Software writes 0 to clear this bit. WDT = 1, The reset source is from watch dog timer controller. WDT = 0, No reset source is from watch dog timer controller.
[3]	CPU	CPU Reset Source Indication Flag This bit is set by the “reset signal” if software writes CPUR bit (SYSRSTC[1]). CPU = 1, The reset source is from CPU reset. CPU = 0, No reset source is from CPU reset.
[2]	CHIP	Chip Reset Source Indication Flag This bit is set by the “reset signal” if software writes CHIPR bit (SYSRSTC[0]). CHIP = 1, The reset source is from CHIP reset. CHIP = 0, No reset source is from CHIP reset.
[1]	EXT	Active Low RESET Pin Reset Source Indication Flag This bit is set by the “reset signal” from RST pin to indicate that the reset source is from external reset pin. Software writes 0 to clear this bit. EXT = 1, The reset source is from RST pin. EXT = 0, No reset source is from RST pin.
[0]	POR	Power On Reset Source Indication Flag This bit is set by the “reset signal” from power on reset circuit to indicate that the reset source is from power on reset circuit. Software writes 0 to clear this bit. POR = 1, The reset source is from power on reset circuit. POR = 0, No reset source is from power on reset circuit.

System Reset Control Register

Register	Offset	RW	Description	Reset Value
SYSRSTC	SMC_BA+0x05	R/W	System Reset Control Register	0x00

Bits	Flag	Description
[7:4]	Reserved	Reserved.
[3]	EXTR	<p>External Reset Enable Flag This bit is set by software. After this bit field is set, and related PBO control registers (PBCTRL1 and PBCTRL0 Registers) are set, external reset function is enabled. EXTR = 1, External reset enabled. EXTR = 0, External reset disabled.</p>
[2]	CPURH	<p>CPU Reset and Hold Flag This bit is set by software to reset and stop CPU execution. This bit will be cleared by hardware automatically after 3 clock cycles. CPURH = 1, MCU reset and hold. CPURH = 0, MCU normal operation.</p>
[1]	CPUR	<p>CPU Reset Flag This bit is set by software to reset MCU. This bit will be cleared by hardware automatically after 3 clock cycles. CPUR = 1, 8051 core reset. CPUR = 0, 8051 core normal operation.</p>
[0]	CHIPR	<p>Whole Chip Reset Flag This bit is set by software to reset whole chip like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. CHIPR = 1, Whole chip reset. CHIPR = 0, Whole chip normal operation.</p>

Peripheral Reset Control 0 Register

Register	Offset	RW	Description	Reset Value
PERRSTCO	SMC_BA+0x06	R/W	Peripheral Reset Control 0 Register	0x00

Bits	Flag	Description
[7]	UARTR	UART Controller Reset Flag This bit is set by software to reset UART controller like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. UARTR = 1, UART reset. UARTR = 0, UART normal operation.
[6]	I2CR	I2C Controller Reset Flag This bit is set by software to reset I2C controller like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. I2CR = 1, I2C reset. I2CR = 0, I2C normal operation.
[5]	Reserved	Reserved.
[4]	RTCR	RTC Controller Reset Flag This bit is set by software to reset RTC controller like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. RTCR = 1, RTC reset. RTCR = 0, RTC normal operation.
[3]	Reserved	Reserved.
[2]	LCMR	LCD Controller Reset Flag This bit is set by software to reset STN LCD controller like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. LCMR = 1, LCM reset. LCMR = 0, LCM normal operation.
[1]	ANAR	Analog IP Controller Reset Flag This bit is set by software to reset analog controller like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. ANAR = 1, ANAC reset. ANAR = 0, ANAC normal operation.
[0]	SDMR	Sigma-Delta Reset Flag This bit is set by software to reset delta sigma ADC like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. SDMR = 1, Sigma-delta reset. SDMR = 0, Sigma-delta normal operation.

Peripheral Reset Control 1 Register

Register	Offset	RW	Description	Reset Value
PERRSTC1	SMC_BA+0x07	R/W	Peripheral Reset Control 1 Register	0x00

Bits	Flag	Description
[7:6]	Reserved	Reserved.
[5]	CAPR	CAP Reset Flag This bit is set by software to reset CAP like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. CAPR = 1, CAP reset. CAPR = 0, CAP normal operation.
[4]	MFAR	MFA Reset Flag This bit is set by software to reset MFA like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. MFAR = 1, MFA reset. MFAR = 0, MFA normal operation.
[3]	SPIR	SPI Reset Flag This bit is set by software to reset SPI like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. SPIR = 1, SPI reset. SPIR = 0, SPI normal operation.
[2]	TMR2R	Timer 2 Reset Flag This bit is set by software to reset Timer 2 like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. TMR2R = 1, Timer 2 reset. TMR2R = 0, Timer 2 normal operation.
[1]	TMR1R	Timer 1 Reset Flag This bit is set by software to reset Timer 1 like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. TMR1R = 1, Timer 1 reset. TMR1R = 0, Timer 1 normal operation.
[0]	TMR0R	Timer 0 Reset Flag This bit is set by software to reset Timer 0 like power on reset circuit does. This bit will be cleared by hardware automatically after 3 clock cycles. TMR0R = 1, Timer 0 reset. TMR0R = 0, Timer 0 normal operation.

PA Control Register

Register	Offset	RW	Description	Reset Value
PACTRL0	SMC_BA+0x08	R/W	PA Control 0 Register	0x00

Register	Offset	RW	Description	Reset Value
PACTRL1	SMC_BA+0x09	R/W	PA Control 1 Register	0x00

PA Num.	Description		
PA0	The PACTRL0[0], and PACTRL1[0] are concatenated to distinguish the PA0 function.		
	Function	PACTRL1[0]	PACTRL0[0]
	PA0	0	0
	MISO	0	1
	Reserved	1	0
	Reserved	1	1
PA1	The PACTRL0[1], PACTRL1[1] are concatenated to distinguish the PA1 function.		
	Function	PACTRL1[1]	PACTRL0[1]
	PA1	0	0
	MOSI	0	1
	Reserved	1	0
	Reserved	1	1
PA2	The PACTRL0[2], PACTRL1[2] are concatenated to distinguish the PA2 function.		
	Function	PACTRL1[2]	PACTRL0[2]
	PA2	0	0
	SCLK	0	1
	INT3	1	0
	Reserved	1	1
PA3	The PACTRL0[3], PACTRL1[3] are concatenated to distinguish the PA3 function.		
	Function	PACTRL1[3]	PACTRL0[3]
	PA3	0	0
	SS	0	1
	INT2	1	0
	Reserved	1	1
PA4	The PACTRL0[4], PACTRL1[4] are concatenated to distinguish the PA4 function.		
	Function	PACTRL1[4]	PACTRL0[4]
	PA4	0	0
	SDA	0	1
	Reserved	1	0
	Reserved	1	1
PA5	The PACTRL0[5], PACTRL1[5] are concatenated to distinguish the PA5 function.		
	Function	PACTRL1[5]	PACTRL0[5]
	PA5	0	0
	SCL	0	1
	INT1	1	0
	Reserved	1	1
PA6	The PACTRL0[6], PACTRL1[6] are concatenated to distinguish the PA6 function.		
	Function	PACTRL1[6]	PACTRL0[6]
	PA6	0	0
	RXD	0	1
	Reserved	1	0
	Reserved	1	1
PA7	The PACTRL0[7], PACTRL1[7] are concatenated to distinguish the PA7 function.		
	Function	PACTRL1[7]	PACTRL0[7]
	PA7	0	0
	TXD	0	1
	Reserved	1	0
	Reserved	1	1

PA Mode Selection Register

The PAMSO, PAMS1 and PAMS2 are used to selection one of the five GPIO modes, which are input mode, push-pull mode, open-drain mode, internal pull-up mode, and high-impedance mode.

Register	Offset	RW	Description	Reset Value
PAMSO	SMC_BA+0x0C	R/W	PA Mode Select 0 Register	0x00

Register	Offset	RW	Description	Reset Value
PAMS1	SMC_BA+0x0D	R/W	PA Mode Select 1 Register	0x00

Register	Offset	RW	Description	Reset Value
PAMS2	SMC_BA+0x0E	R/W	PA Mode Select 2 Register	0x00

PA Num.	Description			
PA0	The PAMSO[0], PAMS1[0], and PAMS2[0] are concatenated to distinguish the PA0 IO function.			
	Function	PAMS2[0]	PAMS1[0]	PAMSO[0]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PA1	The PAMSO[1], PAMS1[1], and PAMS2[1] are concatenated to distinguish the PA1 IO function.			
	Function	PAMS2[1]	PAMS1[1]	PAMSO[1]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PA2	The PAMSO[2], PAMS1[2], and PAMS2[2] are concatenated to distinguish the PA2 IO function.			
	Function	PAMS2[2]	PAMS1[2]	PAMSO[2]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PA3	The PAMSO[3], PAMS1[3], and PAMS2[3] are concatenated to distinguish the PA3 IO function.			
	Function	PAMS2[3]	PAMS1[3]	PAMSO[3]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PA4	The PAMSO[4], PAMS1[4], and PAMS2[4] are concatenated to distinguish the PA4 IO function.			
	Function	PAMS2[4]	PAMS1[4]	PAMSO[4]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PA5	The PAMSO[5], PAMS1[5], and PAMS2[5] are concatenated to distinguish the PA5 IO function.			
	Function	PAMS2[5]	PAMS1[5]	PAMSO[5]

	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	
PA6	The PAMSO[6], PAMS1[6], and PAMS2[6] are concatenated to distinguish the PA6 IO function.				
	Function	PAMS2[6]	PAMS1[6]	PAMSO[6]	
	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	
PA7	The PAMSO[7], PAMS1[7], and PAMS2[7] are concatenated to distinguish the PA7 IO function.				
	Function	PAMS2[7]	PAMS1[7]	PAMSO[7]	
	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	

PA Bit Out Register

Register	Offset	RW	Description	Reset Value
PADO0	SMC_BA+0x0F	R/W	PA0 Bit Output Register	0x00
PADO1	SMC_BA+0x10	R/W	PA1 Bit Output Register	0x00
PADO2	SMC_BA+0x11	R/W	PA2 Bit Output Register	0x00
PADO3	SMC_BA+0x12	R/W	PA3 Bit Output Register	0x00
PADO4	SMC_BA+0x13	R/W	PA4 Bit Output Register	0x00
PADO5	SMC_BA+0x14	R/W	PA5 Bit Output Register	0x00
PADO6	SMC_BA+0x15	R/W	PA6 Bit Output Register	0x00
PADO7	SMC_BA+0x16	R/W	PA7 Bit Output Register	0x00

Bits	Flag	Description
[7:1]	Reserved	Reserved.
[0]	PADOn n = 0 ~ 7	<p>PA I/O Pin Bit Output Control Writing this bit can control one PA pin output value. 1 = Set the corresponding PA pin to high. 0 = Set the corresponding PA pin to low.</p> <p>For example: Writing PADO0 will reflect the written value to bit PADOUT[0].</p>

PA Data Out Write Mask Register

Register	Offset	RW	Description	Reset Value
PAMSK	SMC_BA+0x17	R/W	PA Data Out Write Mask Register	0x00

Bits	Flag	Description
[7:0]	PAxMSK x = 0 ~ 7	Pax Data Output Write Mask 1 = PA pin[x] is protected. 0 = PA pin[x] is able to be updated.

PA Data Out Register

Register	Offset	RW	Description	Reset Value
PADOUT	SMC_BA+0x18	R/W	PA Data Out Register	0x00

Bits	Flag	Description
[7:0]	PADOUT[x] x = 0 ~ 7	PA Data Out 1 = PA pin[x] will drive “HIGH” if the PA pin is configured as output, open-drain. 0 = PA pin[x] will drive “LOW” if the PA pin is configured as output, open-drain.

PA Pin Value Register

Register	Offset	RW	Description	Reset Value
PAPIN	SMC_BA+0x19	R/W	PA PIN Value Register	0x00

Bits	Flag	Description
[7:0]	PAPIN[x] x = 0 ~ 7	PA Pin Value 1 = Indicates PA pin[x] value is 1. 0 = Indicates PA pin[x] value is 0.

PB Control Register

Register	Offset	RW	Description	Reset Value
PBCTRL0	SMC_BA+0x1A	R/W	PB Control 0 Register	0x00

Register	Offset	RW	Description	Reset Value
PBCTRL1	SMC_BA+0x1B	R/W	PB Control 1 Register	0x00

PB Num.	Description		
PB0	The PBCTRL0[0], and PBCTRL1[0] are concatenated to distinguish the PB0 function.		
	Function	PBCTRL1[0]	PBCTRL0[0]
	PB0	0	0
	RST	0	1
	Reserved	1	0
PB1	The PBCTRL0[1], PBCTRL1[1] are concatenated to distinguish the PB1 function.		
	Function	PBCTRL1[1]	PBCTRL0[1]
	PB1	0	0
	XTALOUT	0	1
	Reserved	1	0
PB2	The PBCTRL0[2], PBCTRL1[2] are concatenated to distinguish the PB2 function.		
	Function	PBCTRL1[2]	PBCTRL0[2]
	PB2	0	0
	XTALIN	0	1
	Reserved	1	0
PB3	The PBCTRL0[3], PBCTRL1[3] are concatenated to distinguish the PB3 function.		
	Function	PBCTRL1[3]	PBCTRL0[3]
	PB3	0	0
	Reserved	0	1
	INT0	1	0
PB4	The PBCTRL0[4], PBCTRL1[4] are concatenated to distinguish the PB4 function.		
	Function	PBCTRL1[4]	PBCTRL0[4]
	PB4	0	0
	PWM0	0	1
	Reserved	1	0
PB5	The PBCTRL0[5], PBCTRL1[5] are concatenated to distinguish the PB5 function.		
	Function	PBCTRL1[5]	PBCTRL0[5]
	PB5	0	0
	PWM1	0	1
	Reserved	1	0
PB6	The PBCTRL0[6], PBCTRL1[6] are concatenated to distinguish the PB6 function.		
	Function	PBCTRL1[6]	PBCTRL0[6]
	PB6	0	0
	PWM2	0	1
	Reserved	1	0
PB7	The PBCTRL0[7], PBCTRL1[7] are concatenated to distinguish the PB7 function.		
	Function	PBCTRL1[7]	PBCTRL0[7]
	PB7	0	0
	PWM3	0	1
	Reserved	1	0
	SEG12	1	1

PB Mode Selection Register

The PBMS0, PBMS1 and PBMS2 are used to selection one of the five GPIO modes, which are input mode, push-pull mode, open-drain mode, internal pull-up mode, and high-impedance mode.

Register	Offset	RW	Description	Reset Value
PBMS0	SMC_BA+0x1E	R/W	PB Mode Select 0 Register	0x00

Register	Offset	RW	Description	Reset Value
PBMS1	SMC_BA+0x1F	R/W	PB Mode Select 1 Register	0x00

Register	Offset	RW	Description	Reset Value
PBMS2	SMC_BA+0x20	R/W	PB Mode Select 2 Register	0x00

PB Num.	Description			
PB0	The PBMS0[0], PBMS1[0], and PSMS2[0] are concatenated to distinguish the PB0 IO function.			
	Function	PBMS2[0]	PBMS1[0]	PBMS0[0]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PB1	The PBMS0[1], PBMS1[1], and PBMS2[1] are concatenated to distinguish the PB1 IO function.			
	Function	PBMS2[1]	PBMS1[1]	PBMS0[1]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PB2	The PBMS0[2], PBMS1[2], and PBMS2[2] are concatenated to distinguish the PB2 IO function.			
	Function	PBMS2[2]	PBMS1[2]	PBMS0[2]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PB3	The PBMS0[3], PBMS1[3], and PBMS2[3] are concatenated to distinguish the PB3 IO function.			
	Function	PBMS2[3]	PBMS1[3]	PBMS0[3]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PB4	The PBMS0[4], PBMS1[4], and PBMS2[4] are concatenated to distinguish the PB4 IO function.			
	Function	PBMS2[4]	PBMS1[4]	PBMS0[4]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PB5	The PBMS0[5], PBMS1[5], and PBMS2[5] are concatenated to distinguish the PB5 IO function.			
	Function	PBMS2[5]	PBMS1[5]	PBMS0[5]

	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	
PB6	The PBMS0[6], PBMS1[6], and PBMS2[6] are concatenated to distinguish the PB6 IO function.				
	Function	PBMS2[6]	PBMS1[6]	PBMS0[6]	
	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	
PB7	The PBMS0[7], PBMS1[7], and PBMS2[7] are concatenated to distinguish the PB7 IO function.				
	Function	PBMS2[7]	PBMS1[7]	PBMS0[7]	
	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	

PB Bit Out Register

Register	Offset	RW	Description	Reset Value
PBDO0	SMC_BA+0x21	R/W	PB0 Bit Output Register	0x00
PBDO1	SMC_BA+0x22	R/W	PB1 Bit Output Register	0x00
PBDO2	SMC_BA+0x23	R/W	PB2 Bit Output Register	0x00
PBDO3	SMC_BA+0x24	R/W	PB3 Bit Output Register	0x00
PBDO4	SMC_BA+0x25	R/W	PB4 Bit Output Register	0x00
PBDO5	SMC_BA+0x26	R/W	PB5 Bit Output Register	0x00
PBDO6	SMC_BA+0x27	R/W	PB6 Bit Output Register	0x00
PBDO7	SMC_BA+0x28	R/W	PB7 Bit Output Register	0x00

Bits	Flag	Description
[7:1]	Reserved	Reserved.
[0]	PBDO _n n = 0 ~ 7	<p>PB I/O Pin Bit Output Control Writing this bit can control one PB pin output value. 1 = Set the corresponding PB pin to high. 0 = Set the corresponding PB pin to low.</p> <p>For example: Writing PBDO0 will reflect the written value to bit PBDO[0].</p>

PB Data Out Write Mask Register

Register	Offset	RW	Description	Reset Value
PBMSK	SMC_BA+0x29	R/W	PB Data Out Write Mask Register	0x00

Bits	Flag	Description
[7:0]	PBxMSK x = 0 ~ 7	PBx Data Output Write Mask 1 = PB pin[x] is protected. 0 = PB pin[x] is able to be updated.

PB Data Out Register

Register	Offset	RW	Description	Reset Value
PBDOOUT	SMC_BA+0x2A	R/W	PB Data Out Register	0x00

Bits	Flag	Description
[7:0]	PBDOOUT[x] x = 0 ~ 7	PB Data Out 1 = PB pin[x] will drive “HIGH” if the PB pin is configured as output, open-drain. 0 = PB pin[x] will drive “LOW” if the PB pin is configured as output, open-drain.

PB Pin Value Register

Register	Offset	RW	Description	Reset Value
PBPIN	SMC_BA+0x2B	R/W	PB PIN Value Register	0x00

Bits	Flag	Description
[7:0]	PBPIN[x] x = 0 ~ 7	PB Pin Value 1 = Indicates PB pin[x] value is 1. 0 = Indicates PB pin[x] value is 0.

PC Control Register

Register	Offset	RW	Description	Reset Value
PCCTRL0	SMC_BA+0x2C	R/W	PC Control 0 Register	0x00

Register	Offset	RW	Description	Reset Value
PCCTRL1	SMC_BA+0x2D	R/W	PC Control 1 Register	0x00

PC Num.	Description		
PC0	The PCCTRL0[0], and PCCTRL1[0] are concatenated to distinguish the PC0 function.		
	Function	PCCTRL1[0]	PCCTRL0[0]
	PC0	0	0
	PWM4	0	1
	Reserved	1	0
	SEG11	1	1
PC1	The PCCTRL0[1], PCCTRL1[1] are concatenated to distinguish the PC1 function.		
	Function	PCCTRL1[1]	PCCTRL0[1]
	PC1	0	0
	PWM5	0	1
	Reserved	1	0
	SEG10	1	1
PC2	The PCCTRL0[2], PCCTRL1[2] are concatenated to distinguish the PC2 function.		
	Function	PCCTRL1[2]	PCCTRL0[2]
	PC2	0	0
	nCTS	0	1
	OCD_SWD	1	0
	SEG09	1	1
PC3	The PCCTRL0[3], PCCTRL1[3] are concatenated to distinguish the PC3 function.		
	Function	PCCTRL1[3]	PCCTRL0[3]
	PC3	0	0
	nRTS	0	1
	OCD_SCK	1	0
	SEG08	1	1
PC4	The PCCTRL0[4], PCCTRL1[4] are concatenated to distinguish the PC4 function.		
	Function	PCCTRL1[4]	PCCTRL0[4]
	PC4	0	0
	Reserved	0	1
	ISP_SDA	1	0
	SEG07	1	1
PC5	The PCCTRL0[5], PCCTRL1[5] are concatenated to distinguish the PC5 function.		
	Function	PCCTRL1[5]	PCCTRL0[5]
	PC5	0	0
	Reserved	0	1
	ISP_SCL	1	0
	SEG06	1	1
PC6	The PCCTRL0[6], PCCTRL1[6] are concatenated to distinguish the PC6 function.		
	Function	PCCTRL1[6]	PCCTRL0[6]
	PC6	0	0
	Reserved	0	1
	CMPP	1	0
	SEG05	1	1
PC7	The PCCTRL0[7], PCCTRL1[7] are concatenated to distinguish the PC7 function.		
	Function	PCCTRL1[7]	PCCTRL0[7]
	PC7	0	0
	Reserved	0	1
	CMPN	1	0
	SEG04	1	1

PC Mode Selection Register

The PCMS0, PCMS1 and PCMS2 are used to selection one of the five GPIO modes, which are input mode, push-pull mode, open-drain mode, internal pull-up mode, and high-impedance mode.

Register	Offset	RW	Description	Reset Value
PCMS0	SMC_BA+0x30	R/W	PC Mode Select 0 Register	0x00

Register	Offset	RW	Description	Reset Value
PCMS1	SMC_BA+0x31	R/W	PC Mode Select 1 Register	0x00

Register	Offset	RW	Description	Reset Value
PCMS2	SMC_BA+0x32	R/W	PC Mode Select 2 Register	0x00

PC Num.	Description			
PC0	The PCMS0[0], PCMS1[0], and PSMS2[0] are concatenated to distinguish the PC0 IO function.			
	Function	PCMS2[0]	PCMS1[0]	PCMS0[0]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PC1	The PCMS0[1], PCMS1[1], and PCMS2[1] are concatenated to distinguish the PC1 IO function.			
	Function	PCMS2[1]	PCMS1[1]	PCMS0[1]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PC2	The PCMS0[2], PCMS1[2], and PCMS2[2] are concatenated to distinguish the PC2 IO function.			
	Function	PCMS2[2]	PCMS1[2]	PCMS0[2]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PC3	The PCMS0[3], PCMS1[3], and PCMS2[3] are concatenated to distinguish the PC3 IO function.			
	Function	PCMS2[3]	PCMS1[3]	PCMS0[3]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PC4	The PCMS0[4], PCMS1[4], and PCMS2[4] are concatenated to distinguish the PC4 IO function.			
	Function	PCMS2[4]	PCMS1[4]	PCMS0[4]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PC5	The PCMS0[5], PCMS1[5], and PCMS2[5] are concatenated to distinguish the PC5 IO function.			
	Function	PCMS2[5]	PCMS1[5]	PCMS0[5]

	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	
PC6	The PCMS0[6], PCMS1[6], and PCMS2[6] are concatenated to distinguish the PC6 IO function.				
	Function	PCMS2[6]	PCMS1[6]	PCMS0[6]	
	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	
PC7	The PCMS0[7], PCMS1[7], and PCMS2[7] are concatenated to distinguish the PC7 IO function.				
	Function	PCMS2[7]	PCMS1[7]	PCMS0[7]	
	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	

PC Bit Out Register

Register	Offset	RW	Description	Reset Value
PCD00	SMC_BA+0x33	R/W	PC0 Bit Output Register	0x00
PCD01	SMC_BA+0x34	R/W	PC1 Bit Output Register	0x00
PCD02	SMC_BA+0x35	R/W	PC2 Bit Output Register	0x00
PCD03	SMC_BA+0x36	R/W	PC3 Bit Output Register	0x00
PCD04	SMC_BA+0x37	R/W	PC4 Bit Output Register	0x00
PCD05	SMC_BA+0x38	R/W	PC5 Bit Output Register	0x00
PCD06	SMC_BA+0x39	R/W	PC6 Bit Output Register	0x00
PCD07	SMC_BA+0x3A	R/W	PC7 Bit Output Register	0x00

Bits	Flag	Description
[7:1]	Reserved	Reserved.
[0]	PCDOn n = 0 ~ 7	<p>PC I/O Pin Bit Output Control Writing this bit can control one PC pin output value. 1 = Set the corresponding PC pin to high. 0 = Set the corresponding PC pin to low.</p> <p>For example: Writing PCD00 will reflect the written value to bit PCDOUT[0].</p>

PC Data Out Write Mask Register

Register	Offset	RW	Description	Reset Value
PCMSK	SMC_BA+0x3B	R/W	PC Data Out Write Mask Register	0x00

Bits	Flag	Description
[7:0]	PCxMSK x = 0 ~ 7	PCx Data Output Write Mask 1 = PC pin[x] is protected. 0 = PC pin[x] is able to be updated.

PC Data Out Register

Register	Offset	RW	Description	Reset Value
PCDOUT	SMC_BA+0x3C	R/W	PC Data Out Register	0x00

Bits	Flag	Description
[7:0]	PCDOUT[x] x = 0 ~ 7	PC Data Out 1 = PC pin[x] will drive “HIGH” if the PC pin is configured as output, open-drain. 0 = PC pin[x] will drive “LOW” if the PC pin is configured as output, open-drain.

PC Pin Value Register

Register	Offset	RW	Description	Reset Value
PCPIN	SMC_BA+0x3D	R/W	PC PIN Value Register	0x00

Bits	Flag	Description
[7:0]	PCPIN[x] x = 0 ~ 7	PC Pin Value 1 = Indicates PC pin[x] value is 1. 0 = Indicates PC pin[x] value is 0.

PD Control Register

Register	Offset	RW	Description	Reset Value
PDCTRL0	SMC_BA+0x3E	R/W	PD Control 0 Register	0x00

Register	Offset	RW	Description	Reset Value
PDCTRL1	SMC_BA+0x3F	R/W	PD Control 1 Register	0x00

PD Num.	Description		
PD0	The PDCTRL0[0], and PDCTRL1[0] are concatenated to distinguish the PDO function.		
	Function	PDCTRL1[0]	PDCTRL0[0]
	PDO	0	0
	CAPINO	0	1
	CMPO	1	0
PD1	The PDCTRL0[1], PDCTRL1[1] are concatenated to distinguish the PD1 function.		
	Function	PDCTRL1[1]	PDCTRL0[1]
	PD1	0	0
	CAPIN1	0	1
	OPAP	1	0
PD2	The PDCTRL0[2], PDCTRL1[2] are concatenated to distinguish the PD2 function.		
	Function	PDCTRL1[2]	PDCTRL0[2]
	PD2	0	0
	CAPIN2	0	1
	OPAP	1	0
PD3	The PDCTRL0[3], PDCTRL1[3] are concatenated to distinguish the PD3 function.		
	Function	PDCTRL1[3]	PDCTRL0[3]
	PD3	0	0
	CAPIN3	0	1
	OPAN	1	0
PD4	The PDCTRL0[4], PDCTRL1[4] are concatenated to distinguish the PD4 function.		
	Function	PDCTRL1[4]	PDCTRL0[4]
	PD4	0	0
	Reserved	0	1
	AP0	1	0
PD5	The PDCTRL0[5], PDCTRL1[5] are concatenated to distinguish the PD5 function.		
	Function	PDCTRL1[5]	PDCTRL0[5]
	PD5	0	0
	Reserved	0	1
	AN0	1	0
PD6	The PDCTRL0[6], PDCTRL1[6] are concatenated to distinguish the PD6 function.		
	Function	PDCTRL1[6]	PDCTRL0[6]
	PD6	0	0
	Reserved	0	1
	AP1	1	0
PD7	The PDCTRL0[7], PDCTRL1[7] are concatenated to distinguish the PD7 function.		
	Function	PDCTRL1[7]	PDCTRL0[7]
	PD7	0	0
	Reserved	0	1
	AN1	1	0
	COM0	1	1

PD Mode Selection Register

The PDMS0, PDMS1 and PDMS2 are used to selection one of the five GPIO modes, which are input mode, push-pull mode, open-drain mode, internal pull-up mode, and high-impedance mode.

Register	Offset	RW	Description	Reset Value
PDMS0	SMC_BA+0x42	R/W	PD Mode Select 0 Register	0x00

Register	Offset	RW	Description	Reset Value
PDMS1	SMC_BA+0x43	R/W	PD Mode Select 1 Register	0x00

Register	Offset	RW	Description	Reset Value
PDMS2	SMC_BA+0x44	R/W	PD Mode Select 2 Register	0x00

PD Num.	Description			
PD0	The PDMS0[0], PDMS1[0], and PSMS2[0] are concatenated to distinguish the PD0 IO function.			
	Function	PDMS2[0]	PDMS1[0]	PDMS0[0]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PD1	The PDMS0[1], PDMS1[1], and PDMS2[1] are concatenated to distinguish the PD1 IO function.			
	Function	PDMS2[1]	PDMS1[1]	PDMS0[1]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PD2	The PDMS0[2], PDMS1[2], and PDMS2[2] are concatenated to distinguish the PD2 IO function.			
	Function	PDMS2[2]	PDMS1[2]	PDMS0[2]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PD3	The PDMS0[3], PDMS1[3], and PDMS2[3] are concatenated to distinguish the PD3 IO function.			
	Function	PDMS2[3]	PDMS1[3]	PDMS0[3]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PD4	The PDMS0[4], PDMS1[4], and PDMS2[4] are concatenated to distinguish the PD4 IO function.			
	Function	PDMS2[4]	PDMS1[4]	PDMS0[4]
	Input	0	0	0
	Push-pull	0	0	1
	Open-drain	0	1	0
	Internal pull-up	0	1	1
PD5	The PDMS0[5], PDMS1[5], and PDMS2[5] are concatenated to distinguish the PD5 IO function.			
	Function	PDMS2[5]	PDMS1[5]	PDMS0[5]

	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	
PD6	The PDMS0[6], PDMS1[6], and PDMS2[6] are concatenated to distinguish the PD6 IO function.				
	Function	PDMS2[6]	PDMS1[6]	PDMS0[6]	
	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	
PD7	The PDMS0[7], PDMS1[7], and PDMS2[7] are concatenated to distinguish the PD7 IO function.				
	Function	PDMS2[7]	PDMS1[7]	PDMS0[7]	
	Input	0	0	0	
	Push-pull	0	0	1	
	Open-drain	0	1	0	
	Internal pull-up	0	1	1	
	High-impedence	1	0	0	

PD Bit Out Register

Register	Offset	RW	Description	Reset Value
PDD00	SMC_BA+0x45	R/W	PDO Bit Output Register	0x00
PDD01	SMC_BA+0x46	R/W	PD1 Bit Output Register	0x00
PDD02	SMC_BA+0x47	R/W	PD2 Bit Output Register	0x00
PDD03	SMC_BA+0x48	R/W	PD3 Bit Output Register	0x00
PDD04	SMC_BA+0x49	R/W	PD4 Bit Output Register	0x00
PDD05	SMC_BA+0x4A	R/W	PD5 Bit Output Register	0x00
PDD06	SMC_BA+0x4B	R/W	PD6 Bit Output Register	0x00
PDD07	SMC_BA+0x4C	R/W	PD7 Bit Output Register	0x00

Bits	Flag	Description
[7:1]	Reserved	Reserved.
[0]	PDDOn n = 0 ~ 7	<p>PD I/O Pin Bit Output Control Writing this bit can control one PD pin output value. 1 = Set the corresponding PD pin to high. 0 = Set the corresponding PD pin to low.</p> <p>For example: Writing PDD00 will reflect the written value to bit PDDOUT[0].</p>

PD Data Out Write Mask Register

Register	Offset	RW	Description	Reset Value
PDMSK	SMC_BA+0x4D	R/W	PD Data Out Write Mask Register	0x00

Bits	Flag	Description
[7:0]	PDxMSK x = 0 ~ 7	PDx Data Output Write Mask 1 = PD pin[x] is protected. 0 = PD pin[x] is able to be updated.

PD Data Out Register

Register	Offset	RW	Description	Reset Value
PDDOUT	SMC_BA+0x4E	R/W	PD Data Out Register	0x00

Bits	Flag	Description
[7:0]	PDDOUT[x] x = 0 ~ 7	PD Data Out 1 = PD pin[x] will drive “HIGH” if the PD pin is configured as output, open-drain. 0 = PD pin[x] will drive “LOW” if the PD pin is configured as output, open-drain.

PD Pin Value Register

Register	Offset	RW	Description	Reset Value
PDPIN	SMC_BA+0x4F	R/W	PD PIN Value Register	0x00

Bits	Flag	Description
[7:0]	PDPIN[x] x = 0 ~ 7	PD Pin Value 1 = Indicates PD pin[x] value is 1. 0 = Indicates PD pin[x] value is 0.

Timer Stall Control Register

Register	Offset	RW	Description	Reset Value
TMRSTAL	SMC_BA+0x50	R/W	Timer Stall Control Register	0x00

Bits	Flag	Description
[7:3]	Reserved	Reserved.
[2]	TMR2ST	Timer 2 Stall Flag This bit is set by software and cleared by software. TMR2ST = 1, Timer 2 stall. TMR2ST = 0, Timer 2 normal operation.
[1]	TMR1ST	Timer 1 Stall Flag This bit is set by software and cleared by software. TMR1ST = 1, Timer 1 stall. TMR1ST = 0, Timer 1 normal operation.
[0]	TMROST	Timer 0 Stall Flag This bit is set by software and cleared by software. TMROST = 1, Timer 0 stall. TMROST = 0, Timer 0 normal operation.

SRAM Configuration Register

Register	Offset	RW	Description	Reset Value
RAMCONF	SMC_BA+0x51	R/W	SRAM Configuration Register	0x02

Bits	Flag	Description
[7:4]	MS	Not used but register field reserved.
[3]	Reserved	Reserved.
[2]	MSE	Not used but register reserved.
[1:0]	DVS	SRAM Voltage Selection Flag This bit is set by software and should not be modified except operation voltage is changed to 2V or below. DVS = 2'b10, 3.3v is selected. DVS = 2'b01, 2.0v or below is selected.

6.5 Clock Controller

6.5.1 Overview

The FE81 series supports 3 clock sources for general applications.

- Build-in 12MHz high speed RC oscillator (HSRC)
- Build-in 32KHz low speed RC oscillator (LSRC)
- External 12MHz/32KHz crystal input (XTAL)

12MHz or 32KHz is selected by XTALSEL bit field in CLKEN Register.

The clock controller of the FE81 series controls the 3 clock sources listed as follows.

Clock stable status

The clock source stable flag indicates clock source status. After enabling high speed RC oscillator or external crystal, 1024 clock cycles must be maintained waiting for the stability of the clock source. After enabling low speed oscillator, 16-cycles must be maintained to wait for the stability of the clock source.

Clock selection control

System clock source is selectable from one of the three clock source. Moreover, several sources of peripheral clocks can be selected providing flexibilities for various applications. Please refer to Section 6.5.2 for detailed descriptions.

High performance bus (HPB) clock control

The clocks of HPB peripherals, such as 8051 core, HPB, on-chip SRAM, and FMC, are all controlled by the clock controller.

Peripheral bus (PFB) clock control

The clocks of PFB peripherals are all controlled by the clock controller.

Clock division control

System clock and several peripheral clocks can be divided to meet the requirements of various applications.

Low power mode control

Rich low power modes are supported by FE81 series. Please refer to Section 6.5.3 for detailed descriptions.

6.5.2 Clock Plan Block Diagram

The block diagram of clock plan is illustrated in Figure 6.5-1, and Figure 6.5-2. System clock (FSRC) is selected from one of the 3 clock sources, and can be divided by MCU_N. The HPB clock (HCLK), used by HPB peripherals, is at the same frequency of the 8051 core. The PFB clock (PCLK), used by PFB peripherals, is divided from HPB clock by PFB_N.

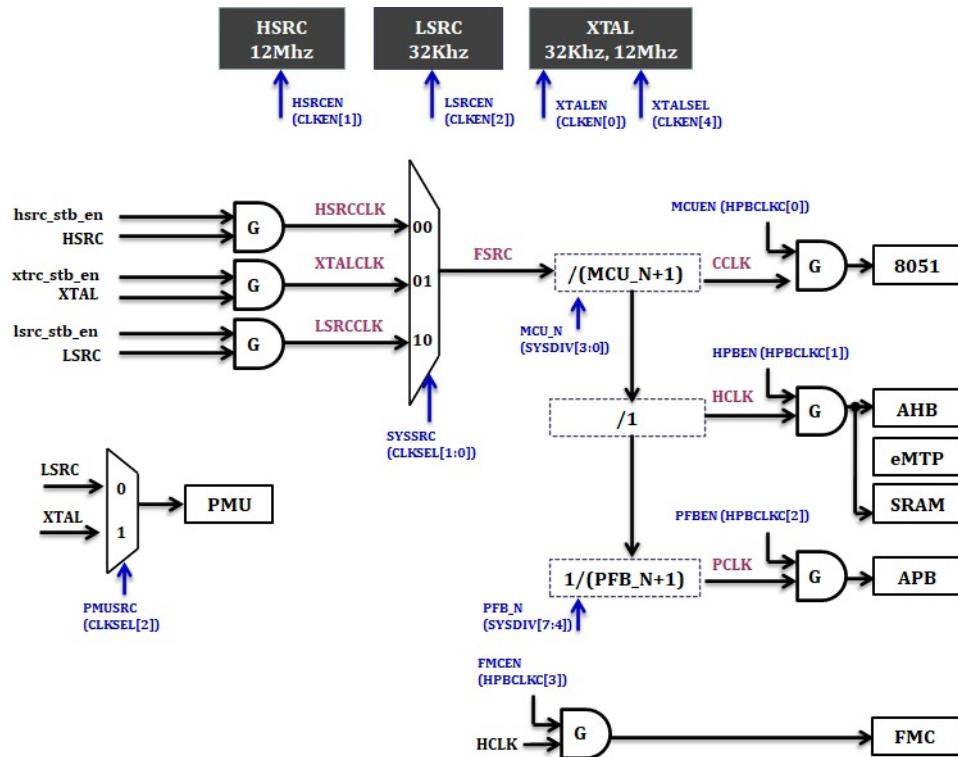


Figure 6.5-1 Clock Architecture of HPB Peripherals

The FE81 series provides flexible control of peripheral clock. For low power purpose, the clock of each peripheral default is gated with corresponding enable flag defined in related register bit field. For example, while GPIO PA port is used, PAEN flag should be set in PFBCLKC1 Register. Figure 6.5-2 illustrates clock architecture of PFB peripherals. Note that while using XTAL as one of the peripheral clock sources for low power mode, the XTAL clock should be set to 32Khz.

Below lists peripherals that using XTAL 32Khz as one of the clock sources. Note that the bit field of WDT clock source selection is defined in WDTCTRL1 Register (CLKSEL flag) in Section 6.10.2.

- Power management unit (PMU)
- Watchdog Timer (WDT)
- Real-time clock (RTC)
- STN LCD controller (LCM)

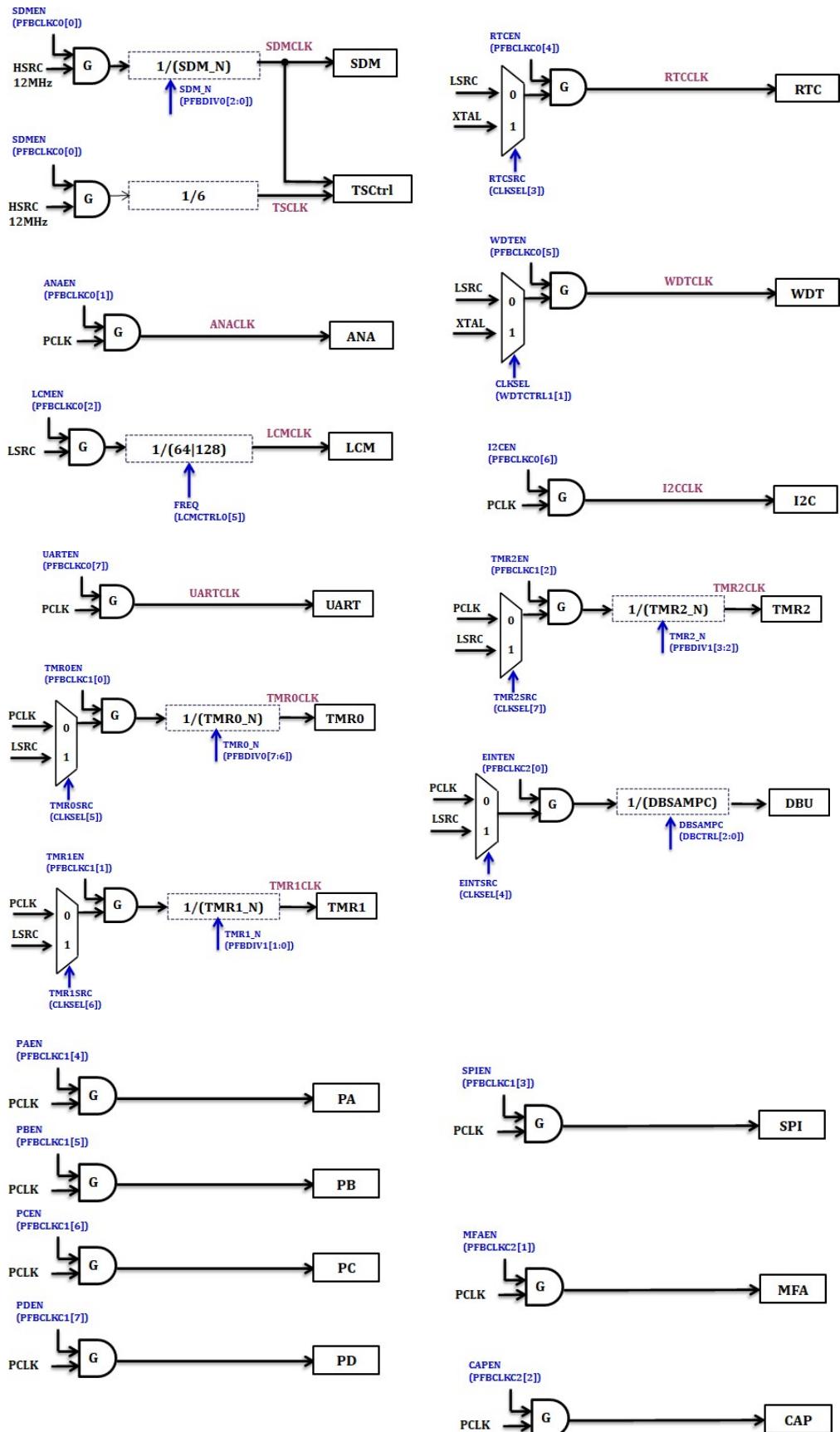


Figure 6.5-2 Clock Architecture of PFB Peripherals

6.5.3 Low Power Mode

The FE81 series supports several low power modes. Table 6.5-1 illustrates the low power mode and related wakeup mechanism.

Power Mode	PMCON	HSRC 8MHz	LSRC 32KHz	XTAL 8M/32K	8051	HPB Periph.	PFB Periph.	Wakeup Mechanism
Normal	00	Enabled	Selected	Selected	CCLK = FSRC	HCLK = CCLK	*PCLK = HCLK/N	None
Slow	00	Selected	Enabled	Selected	CCLK = 32KHz	HCLK = 32KHz	*PCLK = 32KHz	None
Wait	01	Enabled	Selected	Selected	OFF	HCLK = CCLK	*PCLK = HCLK/N	All Reset All Int. RTC Wakeup
Slow Wait	01	Selected	Enabled	Selected	OFF	HCLK = 32KHz	*PCLK = 32KHz	All Reset All Int. RTC Wakeup
Halt	10	Disabled	Enabled	Disabled	OFF	OFF	WDT RTC	Ext. Reset OCD Reset ISP Reset WDT Int. RTC Int. RTC Wakeup Ext. Int.
Shutdown	11	Disabled	Disabled	Disabled	OFF	OFF	OFF	Ext. Reset OCD Reset ISP Reset

Table 6.5-1 Low Power Mode

Figure 6.5-3 depicts the transition of state machine of low power mode. User can reference the diagram to choose the best low power policy for their applications.

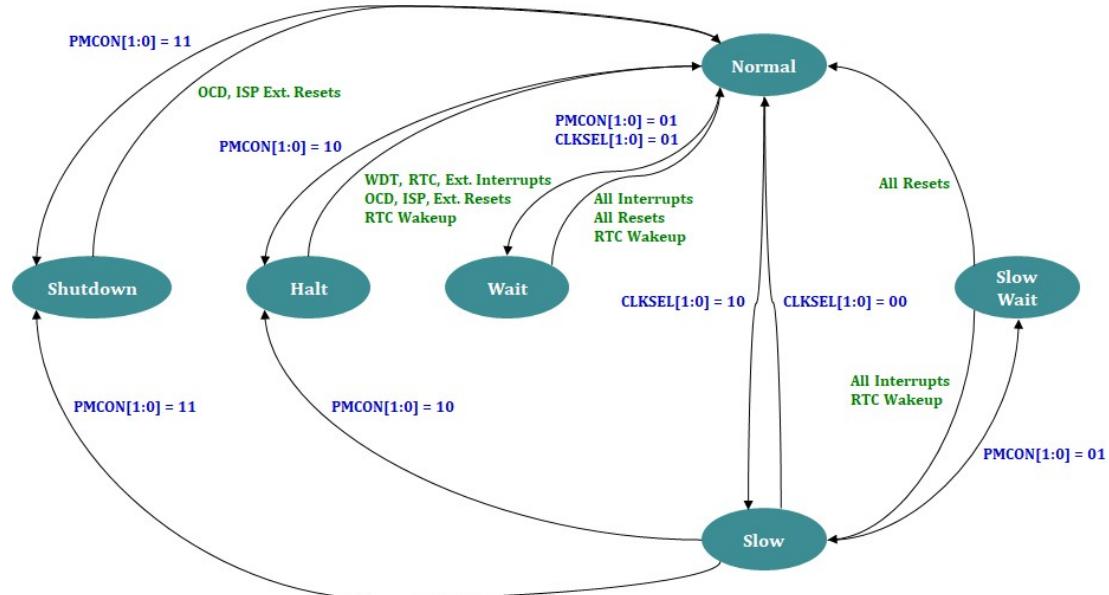


Figure 6.5-3 State Machine of Low Power Mode

Below lists the steps of entering each low power mode.

Slow mode

1. LSRC is on (LSRCEN = 1 in CLKEN Register)
2. Set FSRC source to LSRC (SYSSRC = 2 in CLKSEL Register)
3. HSRC is selected on or off (HSRCEN = 0/1 in CLKEN Register)
4. XTAL is selected on or off (XTALEN = 0/1 in CLKEN Register)

Wait mode

1. LSRC is selected on or off (LSRCEN = 0/1 in CLKEN Register)
2. XTAL is selected on or off (XTALEN = 0/1 in CLKEN Register)
3. Set PMCON to 01 : System clock is selected to HSRC by hardware automatically
4. CCLK is gated
5. CCLK is released by any reset or interrupt and system is returned back to “normal mode” with HSRC enabled

Slow wait mode

1. System enters “slow mode” in advance
2. Set PMCON to 01
3. CCLK is gated
4. CCLK is released by any reset or interrupt and system is returned back to “slow mode” with LSRC enabled

Halt mode

1. WDT/RTC/EINT is enabled in advance
Note that while using external interrupt for waking up from low power “Halt mode”, the clock source of external interrupt controller must be selected to LSRC as the HSRC and XTAL are disabled by hardware.
2. Set PMCON to 10 : System clock is enabled and selected to LSRC by hardware automatically
3. HSRC is disabled by hardware
4. XTAL is disabled by hardware
5. FSRC, CCLK, HCLK and PCLK is gated
6. Clocks are released by corresponding resets and interrupts (refer to Table 6.5-1), and system is returned back to “normal mode” with HSRC enabled

Shutdown mode

1. Set PMCON to 11
2. All clocks are gated by hardware
3. Clocks are released by external, OCD, and ISP resets

6.5.4 Register Map and Description

Base Address (CLK_BA) : 0xE200				
Register	Offset	RW	Description	Reset Value
CLKEN	CLK_BA+0x00	R/W	Clock Enable Control Register	0x07
CLKSTB	CLK_BA+0x01	R	Clock Stable Status Register	0x00
CLKSEL	CLK_BA+0x02	R/W	Clock Select Control Register	0x00
HPBCLKC	CLK_BA+0x03	R/W	HPB Peripheral Clock Control Register	0x07
PFBCLKC0	CLK_BA+0x04	R/W	PFB Peripheral Clock Control 0 Register	0x00
PFBCLKC1	CLK_BA+0x05	R/W	PFB Peripheral Clock Control 1 Register	0x00
PFBCLKC2	CLK_BA+0x06	R/W	PFB Peripheral Clock Control 2 Register	0x00
SYSDIV	CLK_BA+0x07	R/W	System Clock Divider Register	0x00
PFBDIV0	CLK_BA+0x08	R/W	PFB Peripheral Clock Divider 0 Register	0x01
PFBDIV1	CLK_BA+0x09	R/W	PFB Peripheral Clock Divider 1 Register	0x00
PMCON	CLK_BA+0x0A	R/W	Power Mode Control Register	0x00
CLKTRIM	CLK_BA+0x10	R/W	Clock Trim Register	0x00

Clock Enable Control Register

Register	Offset	RW	Description	Reset Value
CLKEN	CLK_BA+0x00	R/W	Clock Enable Control Register	0x07

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4]	XTALSEL	External Crystal Selection Flag This bit is able to be set and cleared by software. XTALSEL = 1, External 32.768Mhz is enabled. XTALSEL = 0, External 8Mhz is enabled.
[3]	Reserved	Reserved.
[2]	LSRCEN	Internal Low Speed Oscillator Enable Flag This bit is set to 1 while internal low speed oscillator is enabled. This bit is able to be set and cleared by software. LSRCEN = 1, Internal low speed oscillator is enabled. LSRCEN = 0, Internal low speed oscillator is disabled.
[1]	HSRCEN	Internal High Speed Oscillator Enable Flag This bit is set to 1 while internal high speed oscillator is enabled. This bit is able to be set and cleared by software. HSRCEN = 1, Internal high speed oscillator is enabled. HSRCEN = 0, Internal high speed oscillator is disabled.
[0]	XTALEN	External Crystal Enable Flag This bit is set to 1 while external crystal is enabled. This bit is able to be set and cleared by software. XTALEN = 1, External crystal is enabled. XTALEN = 0, External crystal is disabled.

Clock Stable Status Register

Register	Offset	RW	Description	Reset Value
CLKSTB	CLK_BA+0x01	R	Clock Stable Status Register	0x00

Bits	Flag	Description
[7:3]	Reserved	Reserved.
[2]	LSRCSTB	Low Speed Oscillator Clock Stable flag This bit is read only and set by hardware. LSRCSTB = 1, Low speed oscillator clock is stable. LSRCSTB = 0, Low speed oscillator clock is not stable.
[1]	HSRCSTB	High Speed Oscillator Clock Stable flag This bit is read only and set by hardware. HSRCSTB = 1, High speed oscillator clock is stable. HSRCSTB = 0, High speed oscillator clock is not stable.
[0]	XTALSTB	External Crystal Clock Stable flag This bit is read only and set by hardware. XTALSTB = 1, External crystal clock is stable. XTALSTB = 0, External crystal clock is not stable.

Clock Select Control Register

Register	Offset	RW	Description	Reset Value
CLKSEL	CLK_BA+0x02	R/W	Clock Select Control Register	0x00

Bits	Flag	Description
[7]	TMR2SRC	TMRO Clock Source Select Flag This bit is set by software, and cleared by software. TMR2SRC = 0, TMRO clock source is from PCLK. TMR2SRC = 1, TMRO clock source is from LSRC.
[6]	TMR1SRC	TMRO Clock Source Select Flag This bit is set by software, and cleared by software. TMR1SRC = 0, TMRO clock source is from PCLK. TMR1SRC = 1, TMRO clock source is from LSRC.
[5]	TMROSRC	TMRO Clock Source Select Flag This bit is set by software, and cleared by software. TMROSRC = 0, TMRO clock source is from PCLK. TMROSRC = 1, TMRO clock source is from LSRC.
[4]	EINTSRC	External Interrupt Sampling Source Clock Select Flag This bit is set by software, and cleared by software. While in low power mode, the clock source must be selected to low speed oscillator. EINTSRC = 0, Sampling clock source is from PFB clock. EINTSRC = 1, Sampling clock source is from low speed oscillator.
[3]	RTCSRC	RTC Clock Source Select Flag This bit is set by software, and cleared by software. RTCSRC = 0, RTC clock source is from low speed oscillator. RTCSRC = 1, RTC clock source is from low speed crystal oscillator.
[2]	PMUSRC	Power Management Unit Clock Source Selection flag This bit is set by software, and cleared by software. PMUSRC = 0, Clock source is from low speed oscillator. PMUSRC = 1, Clock source is from low speed crystal oscillator.
[1:0]	SYSSRC	FSRC Clock Source Selection flag This bit is set by software or hardware, and cleared by software or hardware. SYSSRC = 00, Clock source is from high speed oscillator. SYSSRC = 01, Clock source is from external crystal. SYSSRC = 10, Clock source is from low speed oscillator.

HPB Peripheral Clock Control Register

Register	Offset	RW	Description	Reset Value
HPBCLKC	CLK_BA+0x03	R/W	HPB Peripheral Clock Control Register	0x07

Bits	Flag	Description
[7:4]	Reserved	Reserved.
[3]	FMCEN	FMC Clock Enable flag This bit is set or cleared by software to enable or disable FMC peripheral clock. FMCEN = 1, FMC clock is enabled. FMCEN = 0, FMC clock is disabled.
[2]	PFBEN	PFB Clock Enable flag This bit is set or cleared by software to enable or disable PFB peripheral clock. PFBEN = 1, PFB clock is enabled. PFBEN = 0, PFB clock is disabled.
[1]	HPBEN	HPB Clock Enable flag This bit is set or cleared by software to enable or disable HPB peripheral clock. HPBEN = 1, HPB clock is enabled. HPBEN = 0, HPB clock is disabled.
[0]	MCUEN	MCU Clock Enable flag This bit is set or cleared by software to enable or disable MCU clock. MCUEN = 1, MCU clock is enabled. MCUEN = 0, MCU clock is disabled.

PFB Peripheral Clock Control 0 Register

Register	Offset	RW	Description	Reset Value
PFBCLK0	CLK_BA+0x04	R/W	PFB Peripheral Clock Control 0 Register	0x00

Bits	Flag	Description
[7]	UARTEN	<p>UART Clock Enable flag This bit is set or cleared by software to enable or disable UART clock. UARTEN = 1, UART clock is enabled. UARTEN = 0, UART clock is disabled.</p>
[6]	I2CEN	<p>I2C Clock Enable flag This bit is set or cleared by software to enable or disable I2C clock. While setting I2C clock 400KHz, PCLK must at least 4MHz I2CEN = 1, I2C clock is enabled. I2CEN = 0, I2C clock is disabled.</p>
[5]	WDTEN	<p>WDT Clock Enable flag This bit is set or cleared by software to enable or disable WDT clock. WDTEN = 1, WDT clock is enabled. WDTEN = 0, WDT clock is disabled.</p>
[4]	RTCEN	<p>RTC Clock Enable flag This bit is set or cleared by software to enable or disable RTC clock. RTCEN = 1, RTC clock is enabled. RTCEN = 0, RTC clock is disabled.</p>
[3]	Reserved	Reserved.
[2]	LCMCEN	<p>LCD Controller Clock Enable flag This bit is set or cleared by software to enable or disable LCD controller clock. LCMCEN = 1, LCD controller clock is enabled. LCMCEN = 0, LCD controller clock is disabled.</p>
[1]	ANAEN	<p>Analog Controller Clock Enable flag This bit is set or cleared by software to enable or disable ANAC clock. ANAEN = 1, ANAC clock is enabled. ANAEN = 0, ANAC clock is disabled.</p>
[0]	SDMEN	<p>Sigma-Delta ADC Controller Clock Enable flag This bit is set or cleared by software to enable or disable SDM controller clock. SDMEN = 1, SDM clock is enabled. SDMEN = 0, SDM clock is disabled.</p>

PFB Peripheral Clock Control 90 Register

Register	Offset	RW	Description	Reset Value
PFBCLKC1	CLK_BA+0x05	R/W	PFB Peripheral Clock Control 1 Register	0x00

Bits	Flag	Description
[7]	PDEN	PD Controller Clock Enable flag This bit is set or cleared by software to enable or disable PD controller clock. PDEN = 1, PD clock is enabled. PDEN = 0, PD clock is disabled.
[6]	PCEN	PC Controller Clock Enable flag This bit is set or cleared by software to enable or disable PC controller clock. PCEN = 1, PC clock is enabled. PCEN = 0, PC clock is disabled.
[5]	PBEN	PB Controller Clock Enable flag This bit is set or cleared by software to enable or disable PB controller clock. PBEN = 1, PB clock is enabled. PBEN = 0, PB clock is disabled.
[4]	PAEN	PA Controller Clock Enable flag This bit is set or cleared by software to enable or disable PA controller clock. PAEN = 1, PA clock is enabled. PAEN = 0, PA clock is disabled.
[3]	SPIEN	SPI Controller Clock Enable flag This bit is set or cleared by software to enable or disable SPI controller clock. SPIEN = 1, SPI clock is enabled. SPIEN = 0, SPI clock is disabled.
[2]	TMR2EN	Timer 2 Controller Clock Enable flag This bit is set or cleared by software to enable or disable TMR2 controller clock. TMR2EN = 1, Timer 2 clock is enabled. TMR2EN = 0, Timer 2 clock is disabled.
[1]	TMR1EN	Timer 1 Controller Clock Enable flag This bit is set or cleared by software to enable or disable TMR1 controller clock. TMR1EN = 1, Timer 1 clock is enabled. TMR1EN = 0, Timer 1 clock is disabled.
[0]	TMROEN	Timer 0 Controller Clock Enable flag This bit is set or cleared by software to enable or disable TMRO controller clock. TMROEN = 1, Timer 0 clock is enabled. TMROEN = 0, Timer 0 clock is disabled.

PFB Peripheral Clock Control 2 Register

Register	Offset	RW	Description	Reset Value
PFBCLKC2	CLK_BA+0x06	R/W	PFB Peripheral Clock Control 2 Register	0x00

Bits	Flag	Description
[7:3]	Reserved	Reserved.
[2]	CAPEN	<p>CAP Controller Clock Enable flag This bit is set/cleared by software to enable/disable CAP controller clock. CAPEN = 1, CAP controller clock is enabled. CAPEN = 0, CAP controller clock is disabled.</p>
[1]	MFAEN	<p>MFA Controller Clock Enable flag This bit is set/cleared by software to enable/disable MFA controller clock. MFAEN = 1, MFA controller clock is enabled. MFAEN = 0, MFA controller clock is disabled.</p>
[0]	EINTEN	<p>External Interrupt Sampling Source Clock Enable flag This bit is set/cleared by software to enable/disable external interrupt controller clock. EINTEN = 1, External interrupt sampling clock is enabled. EINTEN = 0, External interrupt sampling clock is disabled.</p>

System Clock Divider Register

Register	Offset	RW	Description	Reset Value
SYSDIV	CLK_BA+0x07	R/W	System Clock Divider Register	0x00

Bits	Flag	Description
[7:4]	PFB_N	<p>Peripheral Bus Clock Divider Number</p> <p>This bit is set by software, cleared by software.</p> <p>Peripheral bus clock frequency = $(HCLK) / (PFB_N + 1)$.</p> <p>PFB_N = 0, $(HCLK) / 1$ PFB_N = 1, $(HCLK) / 2$ PFB_N = 2, $(HCLK) / 3$ PFB_N = 3, $(HCLK) / 4$ ~ PFB_N = 14, $(HCLK) / 15$</p>
[3:0]	MCU_N	<p>MCU Clock Divider Number</p> <p>This bit is set by software, cleared by software.</p> <p>MCU clock frequency = $(FSRC) / (MCU_N + 1)$.</p> <p>MCU_N = 0, $(FSRC) / 1$ MCU_N = 1, $(FSRC) / 2$ MCU_N = 2, $(FSRC) / 3$ MCU_N = 3, $(FSRC) / 4$ ~ MCU_N = 14, $(FSRC) / 15$</p>

PFB Peripheral Clock Divider 0 Register

Register	Offset	RW	Description	Reset Value
PFBDIV0	CLK_BA+0x08	R/W	PFB Peripheral Clock Divider 0 Register	0x01

Bits	Flag	Description				
[7:6]	TMRO_N	Timer	0	Clock	Divider	Number
		This bit is set by software, cleared by software.				
		TMRO_N = 00, PCLK/4.				
		TMRO_N = 01, PCLK/8.				
		TMRO_N = 10, PCLK/16.				
		TMRO_N = 11, PCLK/32.				
[5:3]	Reserved	Reserved.				
[2:0]	SDM_N	Delta Sigma ADC Clock Divider Number				
		This bit is set by software, cleared by software.				
		While setting SDMCLK = 1MHz, PCLK must at least 8MHz.				
		While in “slow mode” or “slow wait mode”, SDM should not be enabled.				
		SDM_N = 000, 1MHz				
		SDM_N = 001, 500KHz				
		SDM_N = 010, 250KHz				
		SDM_N = 011, 125KHz				
		SDM_N = 100, 62.5KHz				
		SDM_N = 101, 31.25KHz				
		Others, Reserved.				

PFB Peripheral Clock Divider 1 Register

Register	Offset	RW	Description	Reset Value
PFB DIV1	CLK_BA+0x09	R/W	PFB Peripheral Clock Divider 1 Register	0x00

Bits	Flag	Description				
[7:4]	Reserved	Reserved.				
[3:2]	TMR2_N	Timer 2 This bit is set by software, cleared by software. TMR2_N = 00, PCLK/4. TMR2_N = 01, PCLK/8. TMR2_N = 10, PCLK/16. TMR2_N = 11, PCLK/32.	Clock	Divider	Number	
[1:0]	TMR1_N	Timer 1 This bit is set by software, cleared by software. TMR1_N = 00, PCLK/4. TMR1_N = 01, PCLK/8. TMR1_N = 10, PCLK/16. TMR1_N = 11, PCLK/32.	Clock	Divider	Number	

Power Mode Control Register

Register	Offset	RW	Description	Reset Value
PMCON	CLK_BA+0x0A	R/W	Power Mode Control Register	0x00

Bits	Flag	Description
[7:2]	Reserved	Reserved.
[1:0]	PMCON	Power Mode Control Flag PMCON = 00, Normal or Slow mode. PMCON = 01, Wait or Slow Wait mode. PMCON = 10, Halt mode. PMCON = 11, Shutdown mode.

Clock Trim Register

Register	Offset	RW	Description	Reset Value
CLKTRIM	CLK_BA+0x10	R/W	Clock Trim Register	0x00

Bits	Flag	Description
[7]	HSRCH	High Speed RC Oscillator Trim High Flag
[6:0]	HSRCL	High Speed RC Oscillator Trim Flag

The clock trim register should not be used by user (defined in eMTP system configuration block).

6.6 Flash Memory Controller (FMC)

6.6.1 Overview

The FE81 series integrates with an 8K-byte on-chip eMTP flash memory, which is accessed by flash memory controller (FMC). The 8K-byte eMTP flash memory has 2 blocks, main block and information block, where main block is stored with user application code, and information block is stored with system configuration and user configuration. Figure 6.6-1 shows the organization of eMTP blocks.

eMTP flash memory blocks

- Main block (4K x 16b)
 - Application code
- Information block (32 x 16b)
 - System configuration (16 x 16b)
 - User configuration (16 x 16b)

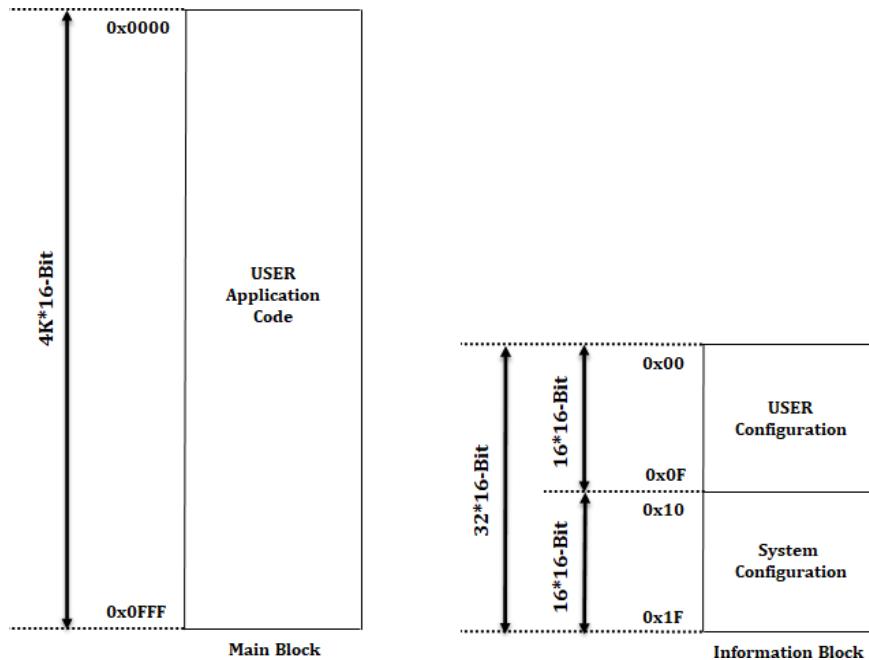


Figure 6.6-1 eMTP Block Organization

The flash memory controller has 2 slave ports (S0, and S1), one is for 8051 core reading the application code, and another is for 8051 core, DAP, and ISP accessing main block and information blocks. Table 6.6-1 describes the FMC port usages accessed by peripherals.

FMC Slave Port	Peripheral	Usage Methodology
S0	8051 core	Main block instruction fetch
S1	8051 core	Information block read/program*1
	DAP	1. Main block read/program 2. Information block read/program
ISP		1. Main block read/program 2. Information block read/program

Table 6.6-1 FMC Port Access Methodology

*1 Note that S1 port should not be used by 8051 core to program main block.

Figure 6.6-2 depicts the diagram of access methodology by 8051 core, DAP, and ISP. The green arrow line shows the access path by 8051 core, the orange arrow line shows the access path by DAP, whereas the dark blue line shows the access path of ISP.

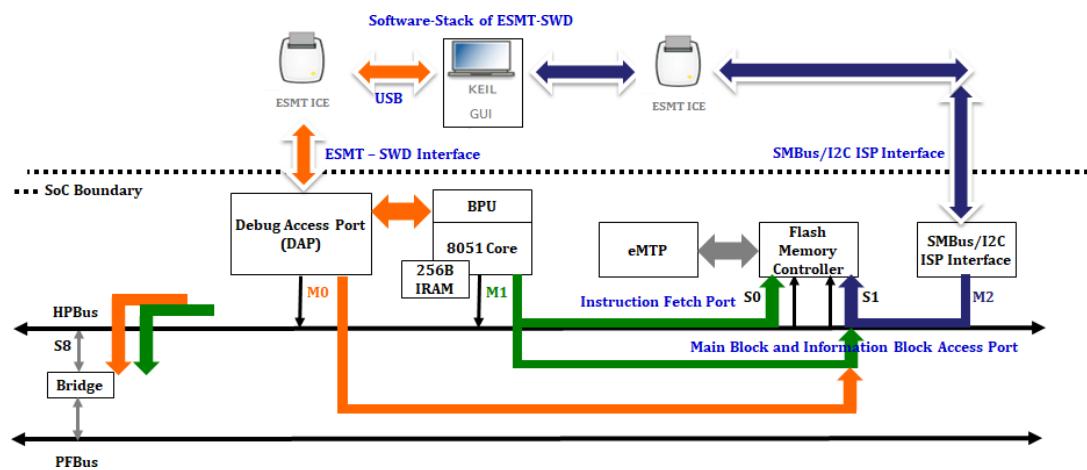


Figure 6.6-2 Block Diagram of eMTP Access

Note that while accessing eMTP via FMC S1 port, the FMC clock must be enabled first by FMCEN bit field in HBPCLKC Register.

6.6.2 System Configuration

The system configuration in information block stores parameters for customers to set initial operation environment. Table 6.6-2 illustrates the detail description of system configuration. User can use provides GUI tool or IDE tool (Keil) for system configuration programming.

Bits	Flag	Description
[31:28]	Reserved	Reserved.
[27]	WDTEN	WDT Enable Flag WDTEN = 0, WDT disabled (Default). WDTEN = 1, WDT enabled.
[26]	LVREN	LVR Enable flag LVREN = 0, LVR disabled (Default). LVREN = 1, LVR enabled.
[25:24]	LVRLV	LVR Level Selection flag LVRLV = 00, 2.7v (Default). LVRLV = 01, 2.3v. LVRLV = 01, 2.1v. LVRLV = 01, 1.9v.
[23]	LVDEN	LVD Enable flag LVDEN = 0, LVD disabled (Default). LVDEN = 1, LVD enabled.
[22:20]	LVDLV	LVD Level Selection flag LVDLV = 0, 2.9v (Default). LVDLV = 1, 2.75v. LVDLV = 2, 2.6v. LVDLV = 3, 2.45v. LVDLV = 4, 2.3v. LVDLV = 5, 2.2v. LVDLV = 6, 2.1v. LVDLV = 7, 1.9v. Others = reserved.
[19]	PB1PB2SEL	PB1 & PB2 IO Function Selection flag PB1PB2SEL = 0, GPIO. PB1PB2SEL = 1, XTAL input (Default).
[18]	PBOSEL	PB0 IO Function Selection flag PBOSEL = 0, GPIO. PBOSEL = 1, External reset (Default).
[17]	PC45SEL	PC4 & PC5 IO Function Selection flag PC45SEL = 0, GPIO. PC45SEL = 1, ISP (Default).
[16]	PC23SEL	PC2 & PC3 IO Function Selection flag PC23SEL = 0, GPIO. PC23SEL = 1, SWD (Default).
[15:8]	HSRCTRIM	High Speed RC Oscillator Trim Flag
[7:6]	Reserved	Reserved

[5:4]	HCLKSRC	HCLK Clock Source Selection flag HCLKSRC = 00, Clock source is from high speed oscillator (Default). HCLKSRC = 01, Clock source is from crystal. HCLKSRC = 10, Clock source is from low speed oscillator.
[3]	XTALSEL	External Crystal Selection Flag XTALSEL = 1, External 32.768Mhz is enabled. XTALSEL = 0, External 8Mhz is enabled (Default).
[2]	LSRCEN	Internal Low Speed Oscillator Enable Flag LSRCEN = 1, Internal low speed oscillator is enabled (Default). LSRCEN = 0, Internal low speed oscillator is disabled.
[1]	HSRCEN	Internal High Speed Oscillator Enable Flag HSRCEN = 1, Internal high speed oscillator is enabled (Default). HSRCEN = 0, Internal high speed oscillator is disabled.
[0]	XTLEN	External Crystal Enable Flag XTLEN = 1, External crystal is enabled (Default). XTLEN = 0, External crystal is disabled.

Table 6.6-2 System Configuration

6.6.3 Debug Access Port (DAP)

The FE81 series uses 2-wire ESMT-SWD interface (up to 4Mb/s) for on-chip debugging and in-circuit-programming (ICP). While using 2-wire ESMT-SWD, the FE81 series receives commands sent from host (IDE tool, for example, Keil), and these commands are decoded by debug access port (DAP) generating related system and 8051 core control signals. That is, all system peripheral registers and memory subsystem are able to be accessed by DAP.

Peripheral accessible by DAP

- Memory subsystem
 - I-RAM (256-byte)
 - X-RAM (1K-byte)
 - eMTP including main block and information block
- Peripheral
 - HPB peripherals
 - PFB peripherals

The 2-wire ESMT-SWD interface are pin-shared with GPIO pins as shown below. The Default setting of PC2, PC3 is OCD function, and users can re-set the function to GPIO by system configuration or application code.

OCD Pin	GPIO Pin	Pin Description
OCD_SWD	PC2	On-chip debugging data input/output pin
OCD_SCK	PC3	On-chip debugging clock input pin

6.6.4 In-System-Programming (ISP)

The FE81 series uses 2-wire ISP interface (up to 400Kb/s) for in system programming. With this ISP feature, IC bounded on PCBA need not to be de-soldered while having the requirement of updating application code. Users only preserve the ISP interface (ISP_SCL pin, ISP_SDA pin) on PCBA, and ESMT will provide GUI tool for customers.

Figure 6.6-3 depicts the ISP protocol, and Table 6.6-3 describes the ISP commands supported by FE81 series. Please refer application note for ISP programming while having the requirement of implementing user's own GUI tool.

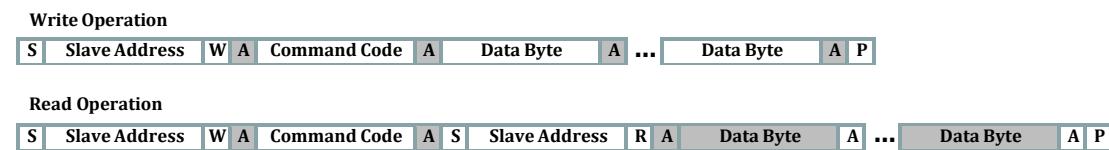


Figure 6.6-3 ISP Protocol

Command	Command Code	Description
Write Address	0x01	Write FMC address
Write Byte	0x10	Write 1 byte to FMC pointed by FMC address
Write Word	0x11	Write 2 bytes to FMC pointed by FMC address
Write Page	0x12	Write 32 bytes to FMC pointed by FMC address
Read Byte	0x20	Read 1 byte from FMC pointed by FMC address
Read Word	0x21	Read 2 bytes from FMC pointed by FMC address
Read Page	0x22	Read 32 bytes from FMC pointed by FMC address
ISPGATE	0x88	8051 core clock gated
ISPFREE	0x89	8051 core clock released
ISPRST	0x99	ISP reset enabled

Table 6.6-3 ISP Command

The 2-wire ISP interface pins are pin-shared with GPIO pins as shown below. Default setting of PC4, PC5 is ISP function, and users can re-set the function to GPIO by system configuration or program code.

ISP Pin	GPIO Pin	Pin Description
ISP_SDA	PC4	ISP data input/output pin
ISP_SCL	PC5	ISP clock input pin

6.6.5 Register Map and Description

Base Address (FMC_BA) : 0xD000				
Register	Offset	RW	Description	Reset Value
FMCCON	FMC_BA+0x00	R/W	Flash Memory Controller Control Register	0x20
FMCCMD	FMC_BA+0x01	R/W	Flash Memory Controller Command Register	0x00
FMCADRO	FMC_BA+0x02	R/W	Flash Memory Controller Address 0 Register	0x00
FMCADR1	FMC_BA+0x03	R/W	Flash Memory Controller Address 1 Register	0x00
FMCDATA0	FMC_BA+0x04	R/W	Flash Memory Controller Data 0 Register	0x00
FMCDATA1	FMC_BA+0x05	R/W	Flash Memory Controller Data 1 Register	0x00
FMCSTAT	FMC_BA+0x06	R	Flash Memory Controller Status Register	0x00
FMCCCKSUM0	FMC_BA+0x07	R	Flash Memory Controller Checksum 0 Register	0x00
FMCCCKSUM1	FMC_BA+0x08	R	Flash Memory Controller Checksum 1 Register	0x00

Flash Memory Controller Register

Register	Offset	RW	Description	Reset Value
FMCCON	FMC_BA+0x00	R/W	Flash Memory Controller Control Register	0x20

Bits	Flag	Description			
[7]	FMCEN	FMC	Function	Enable	Flag
		This bit is set by software, cleared by software, or set by DAP, ISP. FMCEN = 1, FMC function is enabled. FMCEN = 0, FMC function is disabled.			
		Note : MCU writes eMTP information block do not set this flag.			
[6]	INFOEN	FMC	Information	Block	Enable
		This bit is set by software, cleared by software, or set by DAP, ISP. INFOEN = 1, eMTP information block is selected. INFOEN = 0, eMTP main block is selected.			Flag
[5]	ISAVB	eMTP	Operation	Speed	Enable
		This bit is set by software, cleared by software, or set by DAP, ISP. ISAVB = 1, eMTP high speed mode is selected. ISAVB = 0, eMTP low power mode is selected.			Flag
[4:1]	Reserved	Reserved.			
[0]	WDTOF	WDT	Disable		Flag
		This bit is set by software, cleared by software, or set by DAP, ISP. While updating eMTP, watchdog timer must be disabled by this flag. WDTOF = 0, WDT configuration is not changed. WDTOF = 1, WDT is disabled.			

Flash Memory Controller Command Register

Register	Offset	RW	Description	Reset Value
FMCCMD	FMC_BA+0x01	R/W	Flash Memory Controller Command Register	0x00

Bits	Flag	Description
[7:0]	CMD	<p>Flash Memory Command Register</p> <p>FMC supports “Word Program” function. FMC supports “Page Program” function. FMC supports “Word Read” function. FMC supports “Page Read” function. MCU support “Word Program” function. MCU support “Word Read” function.</p> <p>CMD = 0x02, Read flash memory word data (16-bit). (Note: MCU read Information Block must set the command) CMD = 0x08, Program flash memory word data (16-bit). CMD = 0x09, Program flash memory page data (32*16-bit). CMD = 0x91, Flash memory standby. CMD = 0x92, Flash memory static. CMD = 0x93, Flash bit cell current testing CMD = 0x99, Flash memory enable (default enabled).</p>

Flash Memory Controller Address 0 Register

Register	Offset	RW	Description	Reset Value
FMCADRO	FMC_BA+0x02	R/W	Flash Memory Controller Address 0 Register	0x00

Bits	Flag	Description
[7:0]	FMADRO	Flash Memory Address Low Byte This register is set the address of eMTP flash memory.

Flash Memory Controller Address 1 Register

Register	Offset	RW	Description	Reset Value
FMCADR1	FMC_BA+0x03	R/W	Flash Memory Controller Address 1 Register	0x00

Bits	Flag	Description
[7:0]	FMADR1	Flash Memory Address High Byte This register is set the address of eMTP flash memory.

Flash Memory Controller Data 0 Register

Register	Offset	RW	Description	Reset Value
FMCDATA0	FMC_BA+0x04	R/W	Flash Memory Controller Data 0 Register	0x00

Bits	Flag	Description
[7:0]	FMDATO	Flash Memory Data Low Byte This register is set the data of eMTP flash memory. Either flash memory read or program, the data are all located in this register.

Flash Memory Controller Data 1 Register

Register	Offset	RW	Description	Reset Value
FMCDATA1	FMC_BA+0x05	R/W	Flash Memory Controller Data 1 Register	0x00

Bits	Flag	Description
[7:0]	FMDAT1	Flash Memory Data High Byte This register is set the data of eMTP flash memory. Either flash memory read or program, the data are all located in this register.

Flash Memory Controller Status Register

Register	Offset	RW	Description	Reset Value
FMCSTAT	FMC_BA+0x06	R	Flash Memory Controller Status Register	0x00

Bits	Flag	Description
[7]	BUSY	FMC Busy Flag This bit is used for the FMC program ready check. This bit is set by hardware, and cleared by hardware. BUSY = 1, FMC program is not finished. BUSY = 0, FMC idle.
[6]	ECC	FMC Error Correction Check Flag This bit is set by hardware, and cleared by hardware. ECC = 1, FMC read ECC is set. ECC = 0, FMC read without ECC is executed.
[5:0]	Reserved	Reserved.

Flash Memory Controller Checksum 0 Register

Register	Offset	RW	Description	Reset Value
FMCKSUM0	FMC_BA+0x07	R	Flash Memory Controller Checksum 0 Register	0x00

Bits	Flag	Description
[7:0]	CKSUM0	Code Checksum 0 Register

Note : CKSUM0 = CKSUM0 + DATA

Flash Memory Controller Checksum 1 Register

Register	Offset	RW	Description	Reset Value
FMCKSUM1	FMC_BA+0x08	R	Flash Memory Controller Checksum 1 Register	0x00

Bits	Flag	Description
[7:0]	CKSUM1	Code Checksum 1 Register

Note : CKSUM1 = CKSUM1 ^ DATA

6.7 Delta-Sigma Controller (SDM)

6.7.1 Overview

The FE81 series contains a high accuracy multi-channel 24-bit Delta Sigma analog-to-digital converter which can directly interface to external analog signals, such as that from sensors or other control signals and convert these signals directly into a 24-bit digital value.

The following block diagram illustrates the SDM converter basic operational function. The SDM converter input channel can be arranged as seven differential input channels. The SDM converter module will output one bit converted data to FIR filter which can transform the converted one-bit data to 24 bits and store them into the specific data registers. With high accuracy and performance, the device is very suitable for differential output sensor applications such as temperature sensor and other related products.

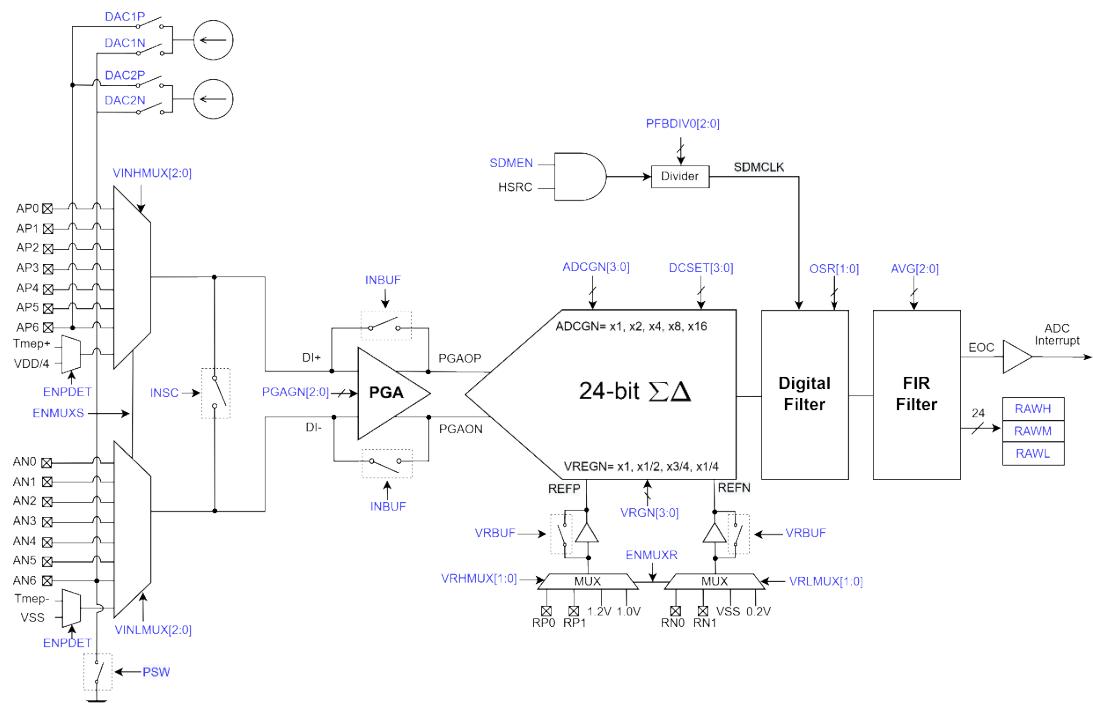


Figure 6.7-1 Block Diagram of SDM

6.7.2 Register Map and Description

Base Address (SDM_BA) : 0xE600				
Register	Offset	RW	Description	Reset Value
RAWL	SDM_BA+0x00	R	SDM Raw Data Low Register	0x00
RAWM	SDM_BA+0x01	R	SDM Raw Data Medium Register	0x00
RAWH	SDM_BA+0x02	R	SDM Raw Data High Register	0x00
CLBL	SDM_BA+0x03	R	SDM Calibration Data Low Register	0x00
CLBM	SDM_BA+0x04	R	SDM Calibration Data Medium Register	0x00
CLBH	SDM_BA+0x05	R	SDM Calibration Data High Register	0x00
SDMGAINL	SDM_BA+0x06	R/W	SDM Sensor Calibration Gain Low Register	0x00
SDMGAINM	SDM_BA+0x07	R/W	SDM Sensor Calibration Gain Medium Register	0x00
SDMGAINH	SDM_BA+0x08	R/W	SDM Sensor Calibration Gain High Register	0x00
SDMOSL	SDM_BA+0x09	R/W	SDM Sensor Calibration OS Low Register	0x00
SDMOSM	SDM_BA+0x0A	R/W	SDM Sensor Calibration OS Medium Register	0x00
SDMOSH	SDM_BA+0x0B	R/W	SDM Sensor Calibration OS High Register	0x00
SDMOFL	SDM_BA+0x0C	R/W	SDM Sensor Calibration OF Low Register	0x00
SDMOFM	SDM_BA+0x0D	R/W	SDM Sensor Calibration OF Medium Register	0x00
SDMOFH	SDM_BA+0x0E	R/W	SDM Sensor Calibration OF High Register	0x00
TEMPGAINL	SDM_BA+0x0F	R/W	SDM Temperature Calibration Gain Low Register	0x00
TEMPGAINM	SDM_BA+0x10	R/W	SDM Temperature Calibration Gain Medium Register	0x00
TEMPGAINH	SDM_BA+0x11	R/W	SDM Temperature Calibration Gain High Register	0x00
TEMPOS L	SDM_BA+0x12	R/W	SDM Temperature Calibration OS Low Register	0x00
TEMPOS M	SDM_BA+0x13	R/W	SDM Temperature Calibration OS Medium Register	0x00
TEMPOS H	SDM_BA+0x14	R/W	SDM Temperature Calibration OS High Register	0x00
TEMPOFL	SDM_BA+0x15	R/W	SDM Temperature Calibration OF Low Register	0x00
TEMPOFM	SDM_BA+0x16	R/W	SDM Temperature Calibration OF Medium Register	0x00
TEMPOFH	SDM_BA+0x17	R/W	SDM Temperature Calibration OF High Register	0x00
OSR	SDM_BA+0x18	R/W	OSR Register	0x00
INMUX	SDM_BA+0x19	R/W	Input Mux Register	0x00
RMUX	SDM_BA+0x1A	R/W	Reference Mux Register	0x00
PGASET	SDM_BA+0x1B	R/W	Enable Configuration Register	0x00
ENCFG	SDM_BA+0x1C	R/W	ADC Setting Register	0x00
ADCSET	SDM_BA+0x1D	R/W	PGA Setting Register	0x00
CONFIG	SDM_BA+0x1E	R/W	Configuration Register	0x00
INTSTAT	SDM_BA+0x1F	R/W	Interrupt Status Register	0x00
TEST	SDM_BA+0x80	R/W	Test Register	0x00

SDM Raw Data Register

Register	Offset	RW	Description	Reset Value
RAWL	SDM_BA+0x00	R	SDM Raw Data Low Register	0x00

Register	Offset	RW	Description	Reset Value
RAWM	SDM_BA+0x01	R	SDM Raw Data Medium Register	0x00

Register	Offset	RW	Description	Reset Value
RAWH	SDM_BA+0x02	R	SDM Raw Data High Register	0x00

Bits	Flag	Description
[7:0]	RAWL	Sigma Delta Raw Data Low Byte Register

Bits	Flag	Description
[7:0]	RAWM	Sigma Delta Raw Data Medium Byte Register

Bits	Flag	Description
[7:0]	RAWH	Sigma Delta Raw Data High Byte Register

SDM Calibration Data Register

Register	Offset	RW	Description	Reset Value
CLBL	SDM_BA+0x03	R	SDM Calibration Data Low Register	0x00

Register	Offset	RW	Description	Reset Value
CLBM	SDM_BA+0x04	R	SDM Calibration Data Medium Register	0x00

Register	Offset	RW	Description	Reset Value
CLBH	SDM_BA+0x05	R	SDM Calibration Data High Register	0x00

Bits	Flag	Description
[7:0]	CLBL	Sigma Delta Calibrated Data Low Byte Register

Bits	Flag	Description
[7:0]	CLBM	Sigma Delta Calibrated Data Medium Byte Register

Bits	Flag	Description
[7:0]	CLBH	Sigma Delta Calibrated Data High Byte Register

SDM Sensor Calibration Gain Register

Register	Offset	RW	Description	Reset Value
SDMGAINL	SDM_BA+0x06	R/W	SDM Sensor Calibration Gain Low Register	0x00

Register	Offset	RW	Description	Reset Value
SDMGAINM	SDM_BA+0x07	R/W	SDM Sensor Calibration Gain Medium Register	0x00

Register	Offset	RW	Description	Reset Value
SDMGAINH	SDM_BA+0x08	R/W	SDM Sensor Calibration Gain High Register	0x00

Bits	Flag	Description
[7:0]	CLBL	Sigma Delta Sensor Calibration Gain Low Byte Register

Bits	Flag	Description
[7:0]	CLBM	Sigma Delta Sensor Calibration Gain Medium Byte Register

Bits	Flag	Description
[7:0]	CLBH	Sigma Delta Sensor Calibration Gain High Byte Register

SDM Sensor Calibration OS Register

Register	Offset	RW	Description	Reset Value
SDMOSL	SDM_BA+0x09	R/W	SDM Sensor Calibration OS Low Register	0x00

Register	Offset	RW	Description	Reset Value
SDMOSM	SDM_BA+0x0A	R/W	SDM Sensor Calibration OS Medium Register	0x00

Register	Offset	RW	Description	Reset Value
SDMOSH	SDM_BA+0x0B	R/W	SDM Sensor Calibration OS High Register	0x00

Bits	Flag	Description
[7:0]	SDMOSL	Sigma Delta Sensor Calibration OS Low Byte Register

Bits	Flag	Description
[7:0]	SDMOSM	Sigma Delta Sensor Calibration OS Medium Byte Register

Bits	Flag	Description
[7:0]	SDMOSH	Sigma Delta Sensor Calibration OS High Byte Register

SDM Sensor Calibration OF Register

Register	Offset	RW	Description	Reset Value
SDMOFL	SDM_BA+0x0C	R/W	SDM Sensor Calibration OF Low Register	0x00

Register	Offset	RW	Description	Reset Value
SDMOFM	SDM_BA+0x0D	R/W	SDM Sensor Calibration OF Medium Register	0x00

Register	Offset	RW	Description	Reset Value
SDMOFH	SDM_BA+0x0E	R/W	SDM Sensor Calibration OF High Register	0x00

Bits	Flag	Description
[7:0]	SDMOFL	Sigma Delta Sensor Calibration OF Low Byte Register

Bits	Flag	Description
[7:0]	SDMOFM	Sigma Delta Sensor Calibration OF Medium Byte Register

Bits	Flag	Description
[7:0]	SDMOFH	Sigma Delta Sensor Calibration OF High Byte Register

SDM Temperature Calibration Gain Register

Register	Offset	RW	Description	Reset Value
TEMPGAINL	SDM_BA+0x0F	R/W	SDM Temperature Calibration Gain Low Register	0x00

Register	Offset	RW	Description	Reset Value
TEMPGAINM	SDM_BA+0x10	R/W	SDM Temperature Calibration Gain Medium Register	0x00

Register	Offset	RW	Description	Reset Value
TEMPGAINH	SDM_BA+0x11	R/W	SDM Temperature Calibration Gain High Register	0x00

Bits	Flag	Description
[7:0]	TEMPGAINL	Sigma Delta Temperature Calibration Gain Low Byte Register

Bits	Flag	Description
[7:0]	TEMPGAINM	Sigma Delta Temperature Calibration Gain Medium Byte Register

Bits	Flag	Description
[7:0]	TEMPGAINH	Sigma Delta Temperature Calibration Gain High Byte Register

SDM Temperature Calibration OS Register

Register	Offset	RW	Description	Reset Value
TEMPOS L	SDM_BA+0x12	R/W	SDM Temperature Calibration OS Low Register	0x00

Register	Offset	RW	Description	Reset Value
TEMPOS M	SDM_BA+0x13	R/W	SDM Temperature Calibration OS Medium Register	0x00

Register	Offset	RW	Description	Reset Value
TEMPOS H	SDM_BA+0x14	R/W	SDM Temperature Calibration OS High Register	0x00

Bits	Flag	Description
[7:0]	TEMPOS L	Sigma Delta Temperature Calibration OS Low Byte Register

Bits	Flag	Description
[7:0]	TEMPOS M	Sigma Delta Temperature Calibration OS Medium Byte Register

Bits	Flag	Description
[7:0]	TEMPOS H	Sigma Delta Temperature Calibration OS High Byte Register

SDM Temperature Calibration OF Register

Register	Offset	RW	Description	Reset Value
TEMPOFL	SDM_BA+0x15	R/W	SDM Temperature Calibration OF Low Register	0x00

Register	Offset	RW	Description	Reset Value
TEMPOFM	SDM_BA+0x16	R/W	SDM Temperature Calibration OF Medium Register	0x00

Register	Offset	RW	Description	Reset Value
TEMPOFH	SDM_BA+0x17	R/W	SDM Temperature Calibration OF High Register	0x00

Bits	Flag	Description
[7:0]	TEMPOFL	Sigma Delta Temperature OF Low Byte Register

Bits	Flag	Description
[7:0]	TEMPOFM	Sigma Delta Temperature OF Medium Byte Register

Bits	Flag	Description
[7:0]	TEMPOFH	Sigma Delta Temperature OF High Byte Register

SDM Over Sampling Register

Register	Offset	RW	Description	Reset Value
OSR	SDM_BA+0x18	R/W	OSR Register	0x00

Bits	Flag	Description
[7:4]	Reserved	Reserved.
[3:0]	OSR	<p>Sigma Delta Over Sampling Rate Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>OSR = 0, Over sampling rate is 32768.</p> <p>OSR = 1, Over sampling rate is 16384.</p> <p>OSR = 2, Over sampling rate is 8192.</p> <p>OSR = 3, Over sampling rate is 4096.</p> <p>OSR = 4, Over sampling rate is 2048.</p> <p>OSR = 5, Over sampling rate is 1024.</p> <p>OSR = 6, Over sampling rate is 512.</p> <p>OSR = 7, Over sampling rate is 256.</p> <p>OSR = 8, Over sampling rate is 128.</p> <p>Others, Reserved.</p>

SDM Input Mux Selection Register

Register	Offset	RW	Description	Reset Value
INMUX	SDM_BA+0x19	R/W	Input Mux Selection Register	0x00

Bits	Flag	Description
[7]	ENMUXS	<p>Sigma Delta Input Mux Function Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENMUXS = 0, Input mux selection function disabled.</p> <p>ENMUXS = 1, Input mux selection function enabled.</p>
[6]	Reserved	Reserved.
[5:3]	VINLMUX	<p>Sigma Delta Negative Input Mux Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>VINLMUX = 0, AN0.</p> <p>VINLMUX = 1, AN1.</p> <p>VINLMUX = 2, AN2.</p> <p>VINLMUX = 3, AN3.</p> <p>VINLMUX = 4, AN4.</p> <p>VINLMUX = 5, AN5.</p> <p>VINLMUX = 6, RN1.</p> <p>VINLMUX = 7, RNO.</p>
[2:0]	VINHMUX	<p>Sigma Delta Positive Input Mux Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>VINHMUX = 0, AP0.</p> <p>VINHMUX = 1, AP1.</p> <p>VINHMUX = 2, AP2.</p> <p>VINHMUX = 3, AP3.</p> <p>VINHMUX = 4, AP4.</p> <p>VINHMUX = 5, AP5.</p> <p>VINHMUX = 6, RP1.</p> <p>VINHMUX = 7, RPO.</p>

SDM Voltage Reference Mux Selection Register

Register	Offset	RW	Description	Reset Value
RMUX	SDM_BA+0x1A	R/W	Voltage Reference Mux Selection Register	0x00

Bits	Flag	Description
[7]	ENMUXR	<p>Sigma Delta Voltage Reference Mux Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENMUXR = 0, Reference mux selection function disabled.</p> <p>ENMUXR = 1, Reference mux selection function enabled.</p>
[6]	Reserved	Reserved.
[5:4]	Reserved	Reserved
[3:2]	VRLMUX	<p>Sigma Delta Negative Voltage Reference Mux Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>VRLMUX = 0, Voltage Reference is RP0.</p> <p>VRLMUX = 1, Voltage Reference is RP1.</p> <p>VRLMUX = 2, Voltage Reference is 1.2V.</p> <p>VRLMUX = 3, Voltage Reference is 1.0V.</p>
[1:0]	VRHMUX	<p>Sigma Delta Positive Voltage Reference Mux Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>VRHMUX = 0, Voltage Reference is RP0.</p> <p>VRHMUX = 1, Voltage Reference is RP1.</p> <p>VRHMUX = 2, Voltage Reference is 1.2V.</p> <p>VRHMUX = 3, Voltage Reference is 1.0V.</p>

SDM PGA Setting Register

Register	Offset	RW	Description	Reset Value
PGASET	SDM_BA+0x1B	R/W	PGA Setting Register	0x00

Bits	Flag	Description
[7]	ENBUFCH	<p>Sigma Delta Buffer Chopper Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENBUFCH = 0, Buffer chopper disabled.</p> <p>ENBUFCH = 1, Buffer chopper enabled.</p>
[6]	VRBUF	<p>Sigma Delta Voltage Reference Buffer Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>VRBUF = 0, Voltage reference buffer disabled.</p> <p>VRBUF = 1, Voltage reference buffer enabled.</p>
[5]	ENPGACH	<p>Sigma Delta PGA Chopper Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENPGACH = 0, PGA chopper disabled.</p> <p>ENPGACH = 1, PGA chopper enabled.</p>
[4]	INBUF	<p>Sigma Delta Input Buffer Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>INBUF = 0, Input buffer disabled.</p> <p>INBUF = 1, Input buffer enabled.</p>
[3]	Reserved	Reserved.
[2:0]	PGAGN	<p>Sigma Delta PGA Gain Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>PGAGN = 0, PGA Gain is 1x.</p> <p>PGAGN = 1, PGA Gain is 2x.</p> <p>PGAGN = 2, PGA Gain is 4x.</p> <p>PGAGN = 3, PGA Gain is 8x.</p> <p>PGAGN = 4, PGA Gain is 16x.</p> <p>PGAGN = 5, PGA Gain is 32x.</p> <p>PGAGN = 6, PGA Gain is 64x.</p> <p>PGAGN = 7, PGA Gain is 128x.</p>

SDM Enable Configuration Register

Register	Offset	RW	Description	Reset Value
ENCFG	SDM_BA+0x1C	R/W	Enable Configuration Register	0x00

Bits	Flag	Description
[7]	ENADC	<p>Sigma Delta ADC Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENADC = 0, SDM disabled.</p> <p>ENADC = 1, SDM enabled.</p>
[6]	ENADCCH	<p>Sigma Delta ADC Chopper Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENADCCH = 0, SDM chopper disabled.</p> <p>ENADCCH = 1, SDM chopper enabled.</p>
[5:4]	VRGN	<p>Sigma Delta Voltage Reference Gain Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>VRGN = 0, Voltage Reference Gain is 1x.</p> <p>VRGN = 1, Voltage Reference Gain is 1/2x.</p> <p>VRGN = 2, Voltage Reference Gain is 3/4x.</p> <p>VRGN = 3, Voltage Reference Gain is 1/4x.</p>
[3:0]	ADCGN	<p>Sigma Delta ADC Gain Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ADCGN = 0, ADC Gain is 1x.</p> <p>ADCGN = 1, ADC Gain is 2x.</p> <p>ADCGN = 3, ADC Gain is 4x.</p> <p>ADCGN = 7, ADC Gain is 8x.</p> <p>ADCGN = 15, ADC Gain is 16x.</p>

SDM ADC Setting Register

Register	Offset	RW	Description	Reset Value
ADCSET	SDM_BA+0x1D	R/W	ADC Setting Register	0x00

Bits	Flag	Description
[7:3]	Reserved	Reserved.
[2:0]	DCSET	Sigma Delta DC Offset Selection Flag This bit is set by software, cleared by software. DCSET = 0, DC Offset is 0 x Vref. DCSET = 1, DC Offset is (1/16) x Vref. DCSET = 2, DC Offset is (2/16) x Vref. DCSET = 3, DC Offset is (3/16) x Vref. DCSET = 4, DC Offset is (4/16) x Vref. DCSET = 5, DC Offset is (5/16) x Vref. DCSET = 6, DC Offset is (6/16) x Vref. DCSET = 7, DC Offset is (7/16) x Vref.

SDM Configuration Register

Register	Offset	RW	Description	Reset Value
CONFIG	SDM_BA+0x1E	R/W	Configuration Register	0x00

Bits	Flag	Description
[7:3]	Reserved	Reserved.
[2]	ENDEM	<p>Sigma Delta DEM clock Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENDEM = 0, DEM clock disabled.</p> <p>ENDEM = 1, DEM clock enabled.</p>
[1]	ENSNSCH	<p>Sigma Delta Temperature Chopper Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENSNSCH = 0, Temperature chopper disabled.</p> <p>ENSNSCH = 1, Temperature chopper enabled.</p>
[0]	ENTMPSNS	<p>Sigma Delta Temperature Function Enable Register</p> <p>This bit is set by software, cleared by software.</p> <p>ENTEMP = 0, Temperature function disabled.</p> <p>ENTEMP = 1, Temperature function enabled.</p> <p>Note: This bit must be set when ADC measurement</p>

SDM Interrupt Status Register

Register	Offset	RW	Description	Reset Value
INTSTAT	SDM_BA+0x1F	R/W	Interrupt Status Register	0x00

Bits	Flag	Description
[7]	INTF	<p>Sigma Delta SDM Interrupt Flag</p> <p>This bit is set by software, cleared by software.</p> <p>INTF = 0, SDM interrupt not happened.</p> <p>INTF = 1, SDM interrupt happened.</p>
[6:1]	Reserved	Reserved.
[0]	INTEN	<p>Sigma Delta Interrupt Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>INTEN = 0, SDM interrupt disabled.</p> <p>INTEN = 1, SDM interrupt enabled.</p>

SDM Test Register

Register	Offset	RW	Description	Reset Value
TEST	SDM_BA+0x80	R/W	Test Register	0x00

Bits	Flag	Description
[7:4]	Reserved	Reserved.
[3]	CALDVDC	<p>Sigma Delta Power Mux Function Flag</p> <p>This bit is set by software, cleared by software.</p> <p>CALDVDC = 0, Power mux function disabled.</p> <p>CALDVDC = 1, Power mux function enabled.</p>
[2:1]	INCH	<p>Input signal architecture configuration</p> <p>00 : INH connects to SDM+ and INL connects to SDM-</p> <p>01 : INL connects to SDM+/SDM-</p> <p>10 : INH connects to SDM+/SDM-</p> <p>11 : INH connects to SDM- and INL connects to SDM+</p>
[0]	INSC	<p>Sigma Delta Input Short Circuit Enable Flag</p> <p>This bit is set by software, cleared by software. INSC = 0, SDM input short disabled.</p> <p>INSC = 1, SDM input short enabled.</p>

6.8 Analog Function (ANA)

6.8.1 Overview

The FE81 series contains OPAMP and related function such that hysteresis comparator and rail to rail comparator which user can use via control IO pin (PD1, PD2, PD3, PC6, PC7) and register (COMPCFG, COMPRES) to implement related application. This device also has a Low Voltage Detector function, also known as LVD. This enabled the devices to monitor the power supply voltage, VDD, and provide a warning signal if it falls below a certain level.

The FE81 series provides two current generation used for SDM measurement in analog input Channel 6, each current generation can be set 10uA~1200uA in register IGEN1, IGEN2, it is very useful for some application, like resistive sensor (RTD).

OPAMP and Comparator

The following block diagram illustrates the OPAMP and Comparator basic operational function.

The OPAMP operate configuration as follows:

- Enable OPAMP flag in register PWCFG.
- Set PD2 as OPAP, PD1 as APAN, PD3 as OPAO in register PDCTRL0, PDCTRL1.
- Set PD2(OPAMP+), PD1(OPAMP-), PD3(OPOUT) as high-impedance in register P3MS0~P3MS2.

The Comparator(R2R) operate configuration as follows:

- Enable CMPREN flag in register COMPCFG.
- Set IVTH flag as 1 in register COMPCFG (Select internal voltage level mux).
- Select voltage level in CMPTH.
- Hardware setting: PC6 (CMP+), PC7 (CMP-).
- The compare result showed in CMPOUT flag in register COMPRES.

The Comparator(HYS) operate configuration as follows:

- Enable CMPHEN flag in register COMPCFG.
- Set IVTH flag as 1 in register COMPCFG (Select internal voltage level mux).
- Select voltage level in CMPPHS.
- Hardware setting: PC6 (CMP+), PC7 (CMP-).
- The compare result showed in CMPOUT flag in register COMPRES.

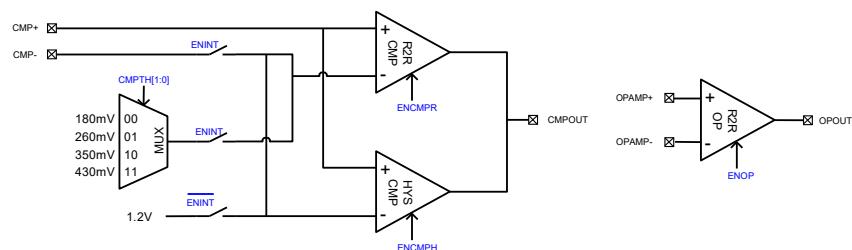


Figure 6.8-1 Block Diagram of OPAMP and Comparator

6.8.2 Register Map and Description

Base Address (ANA_BA) : 0xE800				
Register	Offset	RW	Description	Reset Value
COMPCFG	ANA_BA+0x00	R/W	Analog Comparator Configuration Register	0x00
COMPRES	ANA_BA+0x01	R	Analog Comparator Result Register	0x00
LVCFG	ANA_BA+0x02	R/W	Analog Low Voltage Configuration Register	0x00
LVDIEN	ANA_BA+0x03	R/W	Analog Low Voltage Interrupt Enable Register	0x00
PWCFG	ANA_BA+0x04	R/W	Analog Power Configuration Register	0x02
IGENCTRL	ANA_BA+0x05	R/W	Analog Current Generation Control Register	0x00
IGEN1	ANA_BA+0x06	R/W	Analog Current Generation1 Enable Register	0x00
IGEN2	ANA_BA+0x07	R/W	Analog Current Generation2 Enable Register	0x00
IGENTRIM1	ANA_BA+0x08	R/W	Analog Current Generation Trim 1 Register	0x00
IGENTRIM2	ANA_BA+0x09	R/W	Analog Current Generation Trim 2 Register	0x00
BGTRIM	ANA_BA+0x0A	R/W	Bandgap Trim Register	0x00

Analog Comparator Configuration Register

Register	Offset	RW	Description	Reset Value
COMPCFG	ANA_BA+0x00	R/W	Analog Comparator Configuration Register	0x00

Bits	Flag	Description
[7:5]	CMPHYS	<p>Hysteresis Comparator Voltage Threshold Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>000 : Minimum hysteresis level 111 : Maximum hysteresis level</p>
[4:3]	CMPTH	<p>Rail to Rail Internal Negative Voltage Input Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>CMPTH = 0, Internal 180mV.</p> <p>CMPTH = 1, Internal 260mV.</p> <p>CMPTH = 2, Internal 350mV.</p> <p>CMPTH = 3, internal 430mV.</p>
[2]	CMPIVTH	<p>Comparator Negative Input Voltage Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>CMPIVTH = 0, External negative voltage input.</p> <p>CMPIVTH = 1, Internal negative voltage input.</p>
[1]	CMPHEN	<p>Hysteresis Comparator Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>CMPHEN = 0, Hysteresis comparator disabled.</p> <p>CMPHEN = 1, Hysteresis comparator enabled.</p>
[0]	CMPREN	<p>Rail to Rail Comparator Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>CMPREN = 0, Rail to rail comparator disabled.</p> <p>CMPREN = 1, Rail to rail comparator enabled.</p>

Analog Comparator Result Register

Register	Offset	RW	Description	Reset Value
COMPRES	ANA_BA+0x01	R	Analog Comparator Result Register	0x00

Bits	Flag	Description
[7:1]	Reserved	Reserved.
[0]	CMPOUT	Comparator Result Value This bit is set by hardware, cleared by hardware. CMPOUT = 0, Comparator input positive voltage < input negative voltage. CMPOUT = 1, Comparator input positive voltage >= input negative voltage.

Analog Low Voltage Configuration Register

Register	Offset	RW	Description	Reset Value
LVCFG	ANA_BA+0x02	R/W	Analog Low Voltage Configuration Register	0x00

Bits	Flag	Description
[7]	LVDF	Low Voltage Detect Flag This bit is set by hardware, cleared by hardware. LVDF = 0, Idle. LVDF = 1, Low voltage detected.
[6:4]	LVDLV	Low Voltage Detect Voltage Selection Flag This bit is set by software, cleared by software. LVDLV = 0, 3.0V (Default). LVDLV = 1, 2.8v. LVDLV = 2, 2.6v. LVDLV = 3, 2.4v. LVDLV = 4, 2.2v. LVDLV = 5, 2.0v. LVDLV = 6, 1.8v. LVDLV = 7, 1.6v.
[3:2]	LVRLV	Low Voltage Reset Voltage Selection Flag This bit is set by software, cleared by software. LVRLV = 0, 2.6v. LVRLV = 1, 2.4v. LVRLV = 2, 2.2v. LVRLV = 3, 2.0v.
[1]	LVDEN	Low Voltage Detect Enable Flag This bit is set by software, cleared by software. LVDEN = 0, Low voltage detect disabled. LVDEN = 1, Low voltage detect enabled.
[0]	LVREN	Low Voltage Reset Enable Flag This bit is set by software, cleared by software. LVREN = 0, Low voltage reset disabled. LVREN = 1, Low voltage reset enabled.

Analog Low Voltage Interrupt Enable Register

Register	Offset	RW	Description	Reset Value
LVDIEN	ANA_BA+0x03	R	Analog Low Voltage Interrupt Enable Register	0x00

Bits	Flag	Description
[7:1]	Reserved	Reserved.
[0]	LVDIEN	Low Voltage Interrupt Enable Flag This bit is set by software, cleared by software. LVDIEN = 0, Interrupt disabled. LVDIEN = 1, Interrupt enabled.

Analog Power Configuration Register

Register	Offset	RW	Description	Reset Value
PWCFG	ANA_BA+0x04	R/W	Analog Power Configuration Register	0x02

Bits	Flag	Description
[7]	Reserved	Reserved.
[6]	ENOPAMP	<p>OPAmp Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENOPAMP = 0, OPamp disabled.</p> <p>ENOPAMP = 1, OPamp enabled.</p>
[5]	ENBODN	<p>BOD Negative Voltage Input Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENBODN = 0, BOD negative voltage input disabled.</p> <p>ENBODN = 1, BOD negative voltage input enabled.</p>
[4]	ENBODP	<p>BOD Positive Voltage Input Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENBODP = 0, BOD positive voltage input disabled.</p> <p>ENBODP = 1, BOD positive voltage input enabled.</p>
[3]	ENPDET	<p>PDET Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENPDET = 0, PDET disabled.</p> <p>ENVPET = 1, PDET enabled.</p>
[0]	ENVCM	<p>VCM Input Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENVCM = 0, External VCM input disabled.</p> <p>ENVCM = 1, External VCM input enabled.</p>
[2]	ENLDOA	<p>Analog LDO Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENLDOA = 0, LDOA disabled.</p> <p>ENLDOA = 1, LDOA enabled.</p>
[1]	ENBIAS	<p>Voltage Bias Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENBIAS = 0, Voltage bias disabled.</p> <p>ENBIAS = 1, Voltage bias enabled.</p>

Analog Current Generation Enable Register

Register	Offset	RW	Description	Reset Value
IGENCTRL	ANA_BA+0x05	R/W	Analog Current Generation Control Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4]	PSW	<p>PSW Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>PSW = 0, PSW disabled.</p> <p>PSW = 1, PSW enabled.</p>
[3]	DAC2N	<p>Current Generation 2 Negative Output Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>DAC2N = 0, Current generation 2 negative output disabled.</p> <p>DAC2N = 1, Current generation 2 negative output enabled.</p>
[2]	DAC1N	<p>Current Generation 1 Negative Output Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>DAC1N = 0, Current generation 1 negative output disabled.</p> <p>DAC1N = 1, Current generation 1 negative output enabled.</p>
[1]	DAC2P	<p>Current Generation 2 Positive Output Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>DAC2P = 0, Current generation 2 positive output disabled.</p> <p>DAC2P = 1, Current generation 2 positive output enabled.</p>
[0]	DAC1P	<p>Current Generation 1 Positive Output Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>DAC1P = 0, Current generation 1 positive output disabled.</p> <p>DAC1P = 1, Current generation 1 positive output enabled.</p>

Analog Current Generation Control Register

Register	Offset	RW	Description	Reset Value
IGEN1	ANA_BA+0x06	R/W	Analog Current Generation1 Enable Register	0x00

Bits	Flag	Description
[7]	ENIGEN1	<p>Current Generation 1 Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENIGEN1= 0, Current generation 1 disabled.</p> <p>ENIGEN1= 1, Current generation 1 enabled.</p>
[6:0]	IDAC1	<p>Current Generation 1 Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>IGEN1 = 0, 10uA.</p> <p>IGEN1 = 1, 20uA.</p> <p>IGEN1 = 2, 30uA.</p> <p>IGEN1 = 4, 50uA.</p> <p>IGEN1 = 8, 100uA.</p> <p>IGEN1 = 16, 180uA.</p> <p>IGEN1 = 32, 330uA.</p> <p>IGEN1 = 64, 600uA.</p> <p>IGEN1 = 127, 1200uA.</p>

Analog Current Generation Trim 0 Register

Register	Offset	RW	Description	Reset Value
IGEN2	ANA_BA+0x07	R/W	Analog Current Generation2 Enable Register	0x00

Bits	Flag	Description
[2]	ENIGEN2	<p>Current Generation 2 Enable Flag</p> <p>This bit is set by software, cleared by software.</p> <p>ENIGEN2= 0, Current generation 2 disabled.</p> <p>ENIGEN2= 1, Current generation 2 enabled.</p>
[6:0]	IDAC2	<p>Current Generation 2 Selection Flag</p> <p>This bit is set by software, cleared by software.</p> <p>IGEN2 = 0, 10uA.</p> <p>IGEN2 = 1, 20uA.</p> <p>IGEN2 = 2, 30uA.</p> <p>IGEN2 = 4, 50uA.</p> <p>IGEN2 = 8, 100uA.</p> <p>IGEN2 = 16, 180uA.</p> <p>IGEN2 = 32, 330uA.</p> <p>IGEN2 = 64, 600uA.</p> <p>IGEN2 = 127, 1200uA.</p>
[4:0]	IDAC1_TRIM	<p>Current Generation 1 Trim Value</p> <p>This bit is set by software, cleared by software.</p>

Analog Current Generation Trim 1 Register

Register	Offset	RW	Description	Reset Value
IGENTRIM1	ANA_BA+0x08	R/W	Analog Current Generation Trim 1 Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4:0]	IDAC1_TRIM	Current Generation 1 Trim Value This bit is set by software, cleared by software.

Analog Current Generation Trim 2 Register

Register	Offset	RW	Description	Reset Value
IGENTRIM2	ANA_BA+0x09	R/W	Analog Current Generation Trim 2 Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4:0]	IDAC2_TRIM	Current Generation 2 Trim Value This bit is set by software, cleared by software.

Analog Bandgap Trim Register

Register	Offset	RW	Description	Reset Value
BGTRIM	ANA_BA+0x0A	R/W	Bandgap Trim Register	0x00

Bits	Flag	Description
[7:6]	Reserved	Reserved.
[5:0]	BG_TRIM	Bandgap Trim Value This bit is set by software, cleared by software.

6.9 Real-Time Clock (RTC)

6.9.1 Overview

The FE81 series supports a low power real-time clock (RTC) which keeps track of current time information and provides periodic and alarm interrupts. Each counter (second, minute, hour, and day) has its own interrupt enable flag with corresponding interrupt flag providing flexible control of specified time information control. This RTC also supports alarm interrupt and alarm wakeup, where alarm interrupt is at the PFB clock domain and alarm wakeup is at the RTC clock domain which can be used to wakeup system while PFB clock domain being disabled in low power mode. Note that the pulse width of alarm wakeup signal is 1/32.768KHz. Figure 6.9-1 depicts RTC block diagram.

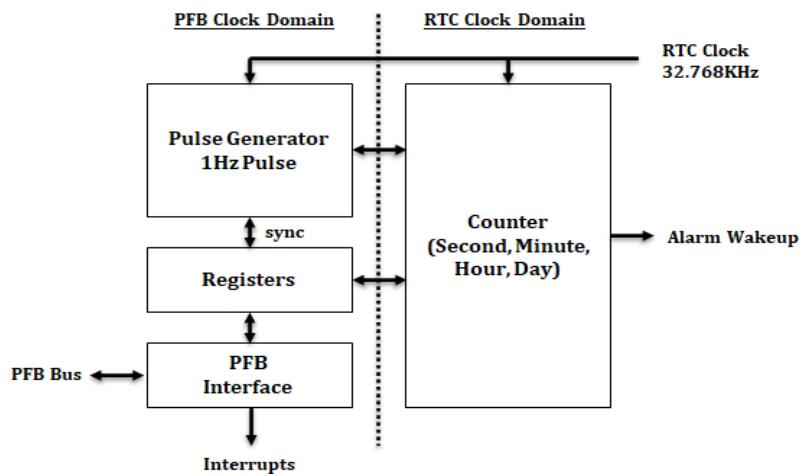


Figure 6.9-1 RTC Block Diagram

RTC Features

- Selective clock sources
 - Internal low speed RC oscillator
 - External low speed crystal (PB1, PB2)
- Periodic interrupts
 - Second interrupt
 - Minute interrupt
 - Hour interrupt
 - Day interrupt
- Programmable alarm interrupt
 - Second alarm
 - Minute alarm
 - Hour alarm
- Alarm wakeup signal to wakeup system in low power mode

6.9.2 Register Map and Description

Base Address (RTC_BA) : 0xEA00				
Register	Offset	RW	Description	Reset Value
CNTSEC	RTC_BA+0x00	R/W	RTC Counter Second Register	0x00
CNTMIN	RTC_BA+0x01	R/W	RTC Counter Minute Register	0x00
CNTHOUR	RTC_BA+0x02	R/W	RTC Counter Hour Register	0x00
CNTDAY	RTC_BA+0x03	R/W	RTC Counter Day Register	0x00
ALMSEC	RTC_BA+0x04	R/W	RTC Alarm Second Register	0x00
ALMMIN	RTC_BA+0x05	R/W	RTC Alarm Minute Register	0x00
ALMHOUR	RTC_BA+0x06	R/W	RTC Alarm Hour Register	0x00
RTCCTRL	RTC_BA+0x07	R/W	RTC Control Register	0x00
RTCSTAT	RTC_BA+0x08	R/W	RTC Status Register	0x00
RTCWDONE	RTC_BA+0x09	R	RTC Write Done Register	0x00

RTC Counter Second Register

Register	Offset	RW	Description	Reset Value
CNTSEC	RTC_BA+0x00	R/W	RTC Counter Second Register	0x00

Bits	Flag	Description
[7:6]	Reserved	Reserved.
[5:0]	CNTSEC	Second Field of Current Time This bit is set by software, cleared by software. CNTSEC = 0 ~ 59

RTC Counter Minute Register

Register	Offset	RW	Description	Reset Value
CNTMIN	RTC_BA+0x01	R/W	RTC Counter Minute Register	0x00

Bits	Flag	Description
[7:6]	Reserved	Reserved.
[5:0]	CNTMIN	Minute Field of Current Time This bit is set by software, cleared by software. CNTMIN = 0 ~ 59

RTC Counter Hour Register

Register	Offset	RW	Description	Reset Value
CNTHOUR	RTC_BA+0x02	R/W	RTC Counter Hour Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4:0]	CNTHOUR	Hour Field of Current Time This bit is set by software, cleared by software. CNTHOUR = 0 ~ 23

RTC Counter Day Register

Register	Offset	RW	Description	Reset Value
CNTDAY	RTC_BA+0x03	R/W	RTC Counter Day Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4:0]	CNTDAY	Day Field of Current Time This bit is set by software, cleared by software. CNTDAY = 0 ~ 30

RTC Alarm Second Register

Register	Offset	RW	Description	Reset Value
ALMSEC	RTC_BA+0x04	R/W	RTC Alarm Second Register	0x00

Bits	Flag	Description
[7:6]	Reserved	Reserved.
[5:0]	ALMSEC	Second Field of Alarm This bit is set by software, cleared by software. ALMSEC = 0 ~ 59

RTC Alarm Minute Register

Register	Offset	RW	Description	Reset Value
ALMMIN	RTC_BA+0x05	R/W	RTC Alarm Minute Register	0x00

Bits	Flag	Description
[7:6]	Reserved	Reserved.
[5:0]	ALMMIN	Minute Field of Alarm This bit is set by software, cleared by software. ALMMIN = 0 ~ 59

RTC Alarm Hour Register

Register	Offset	RW	Description	Reset Value
ALMHOUR	RTC_BA+0x06	R/W	RTC Alarm Hour Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4:0]	ALMHOUR	Hour Field of Alarm This bit is set by software, cleared by software. ALMHOUR = 0 ~ 23

RTC Control Register

Register	Offset	RW	Description	Reset Value
RTCCTRL	RTC_BA+0x07	R/W	RTC Control Register	0x00

Bits	Flag	Description				
[7]	Reserved	Reserved.				
[6]	SECIEN	RTC	Second	Interrupt	Enable	Flag
		This bit is set by software, cleared by software. Second interrupt is generated when one second passed. SECIEN = 0, RTC second interrupt disabled. SECIEN = 1, RTC second interrupt enabled.				
[5]	MINIEN	RTC	Minute	Interrupt	Enable	Flag
		This bit is set by software, cleared by software. Minute interrupt is generated when second of RTC time changes from 59 to 0. MINIEN = 0, RTC minute interrupt disabled. MINIEN = 1, RTC minute interrupt enabled.				
[4]	HORIEN	RTC	Hour	Interrupt	Enable	Flag
		This bit is set by software, cleared by software. Hour interrupt is generated when minute of RTC time changes from 59 to 0. HORIEN = 0, RTC hour interrupt disabled. HORIEN = 1, RTC hour interrupt enabled.				
[3]	DAYIEN	RTC	Day	Interrupt	Enable	Flag
		This bit is set by software, cleared by software. Day interrupt is generated when hour of RTC time changes from 23 to 0. DAYIEN = 0, RTC day interrupt disabled. DAYIEN = 1, RTC day interrupt enabled.				
[2]	ALMIEN	RTC	Alarm	Interrupt	Enable	Flag
		This bit is set by software, cleared by software. ALMIEN = 0, RTC wakeup interrupt disabled. ALMIEN = 1, RTC wakeup interrupt enabled.				
[1]	ALMWEN	RTC	Alarm	Wakeup	Enable	Flag
		This bit is set by software, cleared by software. ALMWEN = 0, RTC wakeup function disabled. ALMWEN = 1, RTC wakeup function enabled.				
[0]	RTCEN	RTC	Enable			Flag
		This bit is set by software, cleared by software. RTCEN = 0, RTC idle. RTCEN = 1, RTC enabled.				

RTC Status Register

Register	Offset	RW	Description	Reset Value
RTCSTAT	RTC_BA+0x08	R/W	RTC Status Register	0x00

Bits	Flag	Description			
[7]	Reserved	Reserved.			
[6]	SECINTF	RTC	Second	Interrupt	Flag
		This bit is set by software, cleared by software (Write 1 to clear). SECINTF = 0, Idle. SECINTF = 1, RTC second interrupt triggered.			
[5]	MININTF	RTC	Minute	Interrupt	Flag
		This bit is set by software, cleared by software (Write 1 to clear). MININTF = 0, Idle. MININTF = 1, RTC minute interrupt triggered.			
[4]	HORINTF	RTC	Hour	Interrupt	Flag
		This bit is set by software, cleared by software (Write 1 to clear). HORINTF = 0, Idle. HORINTF = 1, RTC hour interrupt triggered.			
[3]	DAYINTF	RTC	Day	Interrupt	Flag
		This bit is set by software, cleared by software (Write 1 to clear). DAYINTF = 0, Idle. DAYINTF = 1, RTC day interrupt triggered.			
[2]	ALMINTF	RTC	Alarm	Interrupt	Flag
		This bit is set by software, cleared by software (Write 1 to clear). ALMINTF = 0, Idle. ALMINTF = 1, RTC wakeup interrupt triggered.			
[1:0]	Reserved	Reserved.			

RTC Write Done Register

Register	Offset	RW	Description	Reset Value
RTCWDONE	RTC_BA+0x09	R	RTC Write Done Register	0x00

Bits	Flag	Description		
[7:1]	Reserved	Reserved.		
[0]	WDONE	RTC	Write	Done
		This bit is set by hardware. See section 6.9.3 for detail description. WDONE = 0, Synchronous in progress.		Flag
		WDONE = 1, Registers write is synchronized to the RTC clock domain.		

6.9.3 Programming Model

While updating RTC registers (Counters, Alarm, and Control registers, etc), all registers must be synchronized to the RTC clock domain. The RTC provides a RTCWDONE Register for user to check the process of synchronous. While updating registers, the WDONE flag in RTCWDONE Register becomes zero and returns to one when all prior updates have been successfully synchronized to the RTC clock domain. For usage convenient, each of the RTC registers is synchronized independently while their synchronization status is lumped into this single bit. Thus, writes to different RTC registers can be done in a batch before checking this bit. Note that while an RTC register update is being synchronized to the RTC clock domain, a second update to the same register may be dropped.

Since the frequency of the RTC clock is quite slow when compared to the typical frequency of the PFB clock, the synchronization period can be pretty long. The PFB clock domain should not be shut down while the synchronization is still in progress.

Adjust time and interrupts on the “Hour”

Step 1 :

Wait until the WDONE field of the RTCWDONE Register equals 1.

Step 2 :

Set the counter register to the current time (CNTSEC, CNTMIN, CNTHOUR Registers); set the CNTDAY to 0 to count from day 0.

Step 3 :

Enable the RTC and hourly interrupt: set the RTCCTRL Register to 0x11.

Trigger an alarm interrupt at a specific time

Step 1 :

Wait until the WDONE field of the RTCWDONE Register equals 1.

Step 2 :

Set the alarm register (ALMSEC, ALMMIN, ALMHOUR Registers) to the time you want to alarm.

Step 3 :

Enable the RTC and alarm: set the RTCCTRL Register to 0x5.

Trigger an alarm wakeup signal at a specific time

Step 1 :

Wait until the WDONE field of the RTCWDONE Register equals 1.

Step 2 :

Set the alarm register (ALMSEC, ALMMIN, ALMHOUR Registers) to the time you want to wake up the system.

Step 3 :

Enable the RTC and alarm wakeup: set the RTCCTRL Register to 0x3.

6.10 Watchdog Timer Controller (WDT)

6.10.1 Overview

Watchdog timer (WDT) is used to prevent a system from lock-up when program execution goes astray. Furthermore, system is able to be wakeup by WDT while in low power mode. Figure 6.10-1 shows the block diagram of WDT.

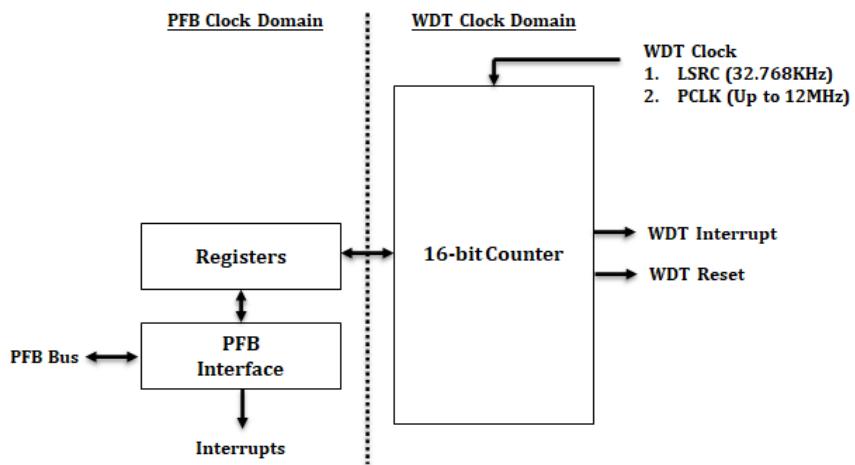


Figure 6.10-1 WDT Block Diagram

WDT Features

- Programmable source of timer clock
- Provides combinations of interrupt and reset when the watchdog timer expires
- Programmable interrupt time for interrupt generation
 - $(1/WDTCLK) \times (2^n, n = 6 \sim 15)$
- Programmable reset time for reset generation
 - $(1/WDTCLK) \times (2^n, n = 7 \sim 10)$
- Provides a write protection mechanism for the Control or Restart registers
- Specific magic numbers for write protection of registers and restart of the timer
- Watchdog timer could be externally paused by FMCCON Register (WDTOF) of FMC

The watchdog timer (WDT) provides a two-stage mechanism to prevent a system from lock-up. The first stage is called “interrupt stage”. If the watchdog interrupt is enabled and the watchdog timer is not restarted during the interrupt stage, the interrupt signal, WDT Interrupt, will be asserted. The second stage, reset stage, begins right after the interrupt stage. If the watchdog reset stage is enabled and the watchdog timer is not restarted during the reset stage, the reset signal, WDT Reset, will be asserted. Figure 6.10-2 depicts the 2 stages of the WDT.

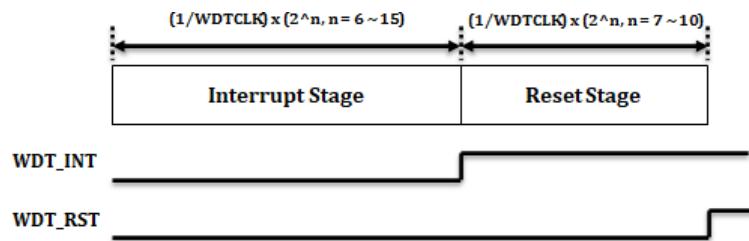


Figure 6.10-2 2 Stages of WDT

The WDTCTRL0, WDTCTRL1 Registers and RESTART Register (Section 6.10.2) should be programmed through a two-step write scheme. The WRPROT Register (Section 6.10.2) should be programmed with a magic number “0xA5” to disable the write protection before either of the registers could be updated. The register write-protection is enabled again upon the subsequent write to any of the watchdog registers is received.

When the RESTART Register is written with the preconfigured value “0x5A”, it restarts the interrupt timer and cancels the system reset timer. When the value is not “0x5A”, the controller just ignores the write.

6.10.2 Register Map and Description

Base Address (WDT_BA) : 0xEC00				
Register	Offset	RW	Description	Reset Value
WDTCTRL0	WDT_BA+0x00	R/W	WDT Control 0 Register	0x00
WDTCTRL1	WDT_BA+0x01	R/W	WDT Control 1 Register	0x00
RESTART	WDT_BA+0x02	W	WDT Restart Register	0x00
WRPROT	WDT_BA+0x03	W	WDT Write Protect Register	0x00
STATUS	WDT_BA+0x04	R	WDT Status Register	0x00

WDT Control 0 Register

Register	Offset	RW	Description	Reset Value
WDTCTRL0	WDT_BA+0x00	R/W	WDT Control 0 Register	0x00

Bits	Flag	Description					
[7:6]	Reserved	Reserved.					
[5:4]	RSTTIME	WDT This bit is set by software, cleared by software. RSTTIME = 00, Clock period x 128. RSTTIME = 01, Clock period x 256. RSTTIME = 10, Clock period x 512. RSTTIME = 11, Clock period x 1024	Reset	Time	Interval	Selection	Flag
[3]	Reserved	Reserved.					
[2:0]	INTTIME	WDT This bit is set by software, cleared by software. INTTIME = 000, Clock period x 64. INTTIME = 001, Clock period x 256. INTTIME = 010, Clock period x 1024. INTTIME = 011, Clock period x 2048. INTTIME = 100, Clock period x 4096. INTTIME = 101, Clock period x 8192. INTTIME = 110, Clock period x 16384. INTTIME = 111, Clock period x 32768	Interrupt	Time	Interval	Selection	Flag

WDT Control 1 Register

Register	Offset	RW	Description	Reset Value
WDTCTRL1	WDT_BA+0x01	R/W	WDT Control 1 Register	0x00

Bits	Flag	Description			
[7:4]	Reserved	Reserved.			
[3]	RSTEN	WDT	Reset	Enable	Flag
		This bit is set by software, cleared by software. RSTEN = 0, WDT reset disable. RSTEN = 1, WDT reset enable.			
[2]	INTEN	WDT	Interrupt	Enable	Flag
		This bit is set by software, cleared by software. INTEN = 0, WDT interrupt disable. INTEN = 1, WDT interrupt enable.			
[1]	CLKSEL	WDT	Internal	Clock	Selection
		This bit is set by software, cleared by software. Note that while using WDT for low power mode wakeup, the clock source should be selected to LSRC. CLKSEL = 0, LSRC. CLKSEL = 1, PCLK.			
[0]	WDTEN	WDT			Enable
		This bit is set by software, cleared by software. WDTEN = 0, WDT disable. WDTEN = 1, WDT enable.			

WDT Restart Register

Register	Offset	RW	Description	Reset Value
RESTART	WDT_BA+0x02	W	WDT Restart Register	0x00

Bits	Flag	Description		
[7:0]	RESTART	WDT	RESTART This bit is set by software, cleared by software. RESTART = 0x5A to restart the WDT.	Magic Number

WDT Write Protect Register

Register	Offset	RW	Description	Reset Value
WRPROT	WDT_BA+0x03	W	WDT Write Protect Register	0x00

Bits	Flag	Description				
		WDT	Write	Protect	Magic	Number
[7:0]	WRPROT	This bit is set by software, cleared by software. WRPROT = 0xA5 to disable write protection of the registers.				

WDT Status Register

Register	Offset	RW	Description	Reset Value
STATUS	WDT_BA+0x04	R	WDT Status Register	0x00

Bits	Flag	Description	Flag
[7:1]	Reserved	Reserved.	
[0]	WDTINTF	WDT This bit is set by Hardware, cleared by Software (Write 1 to clear). WDTINTF = 0, WDT is not expired. Interrupt WDTINTF = 1, WDT is expired.	

6.10.3 Programming Model

Setup and enable WDT

Step 1 :

 Write “0xA5” to the WRPROT Register.

Step 2 :

 Select the clock source (CLKSEL bit field in WDTCTRL1 Register).

 Set the intervals of interrupt (INTTIME) and reset (RSTTIME).

 Enable the WDT interrupt (INTEN), reset (RSTEN).

 Enable the WDT (WDTEN = 1).

Restart the WDT

Once WDT is enabled, it must be restarted by software to avoid the WDT interrupt/reset.

Step 1 :

 Write “0xA5” to the WRPROT Register.

Step 2 :

 Write “0x5A” to the RESTART Register.

Disable the WDT

Step 1 :

 Write “0xA5” to the WRPROT Register.

Step 2 :

 Disable the WDT (WDTEN = 0).

6.11 Timer Controller (TMR)

6.11.1 Overview

Timer controller can be used for counting, clock generation, event counting, and frequency measurement, etc. The FE81 series supports 3 timer controllers, which is TMR0, TMR1, and TMR2. Each timer (TMR x , $x = 0 \sim 2$) has 2-channel, and each channel supports 6 multi-function modes. Figure 6.11-1 illustrates the block diagram of TMR.

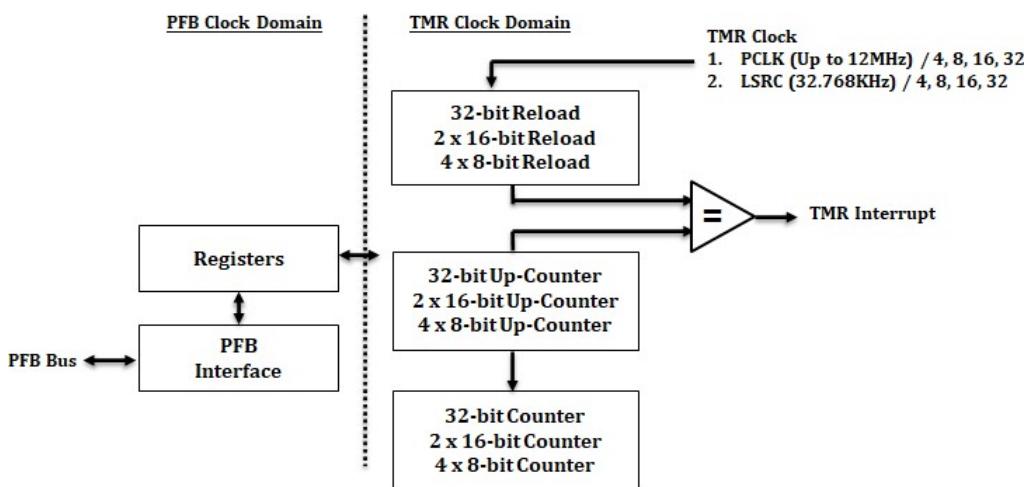


Figure 6.11-1 Timer Block Diagram

TMR Features

- Programmable source of timer clock
- 2-channel with each supports 6 multi-function timers
 - 1 32-bit Timer / 2 16-bit Timers / 4 8-bit Timers / PWM / PWM+16-bit Timer / PWM+8-bit Timers
- Externally paused by TMROST, TMR1ST, TMR2ST bit field defined in SMU TMRSTAL Register

Channel Mode	32-bit Timer	16-bit Timers	8-bit Timers	PWM	Mixed PWM/16-bit Timer	Mixed PWM/8-bit Timers
Channel Function	32-bit Timer 0	16-bit Timer 0 16-bit Timer 1	8-bit Timer 0 8-bit Timer 1 8-bit Timer 2 8-bit Timer 3	16-bit PWM	16-bit Timer 0 8-bit PWM	8-bit Timer 0 8-bit Timer 1 8-bit PWM

An n-bit timer means the timer contains an n-bit counter to generate periodic interrupts. An n-bit PWM means the PWM contains two n-bit counters to generate periodic square waves with programmable duty cycles. The more bits a counter contains, the larger period it can support. Table above shows the effective devices of the corresponding channel modes.

The reload register (CHxRL3, CHxRL2, CHxRL1, CHxRL0, x = 0, 1) keeps the initial/reload value(s) for timer/PWM counter(s). The definition of the reload register varies according to the channel mode. The period of timer or PWM is equal to the reload value plus one. For example, in the 32-bit timer mode, a timer interrupt will be generated every $\{\text{CH0RL3, CH0RL2, CH0RL1, CH0RL0}\} + 1$ cycles. At the PWM mode, the high period is $\{\text{CH0RL3, CH0RL2}\} + 1$ cycles and the low period is $\{\text{CH0RL1, CH0RL0}\} + 1$ cycles.

Channel counter register (CHxCNT3, CHxCNT2, CHxCNT1, CHxCNT0, x = 0, 1) indicates the remaining cycles for the next timer interrupt or PWM toggle. Like the reload register, the field definition of counter register varies according to the channel mode.

6.11.2 Register Map and Description

Base Address (TMR_BA) : 0xF600, 0xF800, 0xFA00				
Register	Offset	RW	Description	Reset Value
INTEN	TMR_BA+0x00	R/W	Timer Interrupt Enable Register	0x00
INTSTAT	TMR_BA+0x01	R/W	Timer Interrupt Status Register	0x00
CHEN	TMR_BA+0x02	R/W	Timer Channel Enable Register	0x00
CH0CTRL	TMR_BA+0x03	R/W	Timer Channel 0 Control Register	0x00
CH1CTRL	TMR_BA+0x04	R/W	Timer Channel 1 Control Register	0x00
CH0RL0	TMR_BA+0x05	R/W	Timer Channel 0 Reload 0 Register	0x00
CH0RL1	TMR_BA+0x06	R/W	Timer Channel 0 Reload 1 Register	0x00
CH0RL2	TMR_BA+0x07	R/W	Timer Channel 0 Reload 2 Register	0x00
CH0RL3	TMR_BA+0x08	R/W	Timer Channel 0 Reload 3 Register	0x00
CH1RL0	TMR_BA+0x09	R/W	Timer Channel 1 Reload 0 Register	0x00
CH1RL1	TMR_BA+0x0A	R/W	Timer Channel 1 Reload 1 Register	0x00
CH1RL2	TMR_BA+0x0B	R/W	Timer Channel 1 Reload 2 Register	0x00
CH1RL3	TMR_BA+0x0C	R/W	Timer Channel 1 Reload 3 Register	0x00
CH0CNT0	TMR_BA+0x0D	R/W	Timer Channel 0 Counter 0 Register	0x00
CH0CNT1	TMR_BA+0x0E	R/W	Timer Channel 0 Counter 1 Register	0x00
CH0CNT2	TMR_BA+0x0F	R/W	Timer Channel 0 Counter 2 Register	0x00
CH0CNT3	TMR_BA+0x10	R/W	Timer Channel 0 Counter 3 Register	0x00
CH1CNT0	TMR_BA+0x11	R/W	Timer Channel 1 Counter 0 Register	0x00
CH1CNT1	TMR_BA+0x12	R/W	Timer Channel 1 Counter 1 Register	0x00
CH1CNT2	TMR_BA+0x13	R/W	Timer Channel 1 Counter 2 Register	0x00
CH1CNT3	TMR_BA+0x14	R/W	Timer Channel 1 Counter 3 Register	0x00

Timer Interrupt Enable Register

Register	Offset	RW	Description	Reset Value
INTEN	TMR_BA+0x00	R/W	Timer Interrupt Enable Register	0x00

Bits	Flag	Description					
[7]	CH1IEN3	Channel 1 Timer 3 Interrupt	Enable	Flag			
		This bit is set by software, cleared by software. If 4x8-bit timer mode is used, the bit field is set. CH1IEN3 = 0, Idle. CH1IEN3 = 1, Channel 1 timer 3 interrupt enabled.					
[6]	CH1IEN2	Channel 1 Timer 2 Interrupt	Enable	Flag			
		This bit is set by software, cleared by software. If 4x8-bit timer mode is used, the bit field is set. CH1IEN2 = 0, Idle. CH1IEN2 = 1, Channel 1 timer 2 interrupt enabled.					
[5]	CH1IEN1	Channel 1 Timer 1 Interrupt	Enable	Flag			
		This bit is set by software, cleared by software. If 2x16-bit timer, 4x8-bit timer mode is used, the bit field is set. CH1IEN1 = 0, Idle. CH1IEN1 = 1, Channel 1 timer 1 interrupt enabled.					
[4]	CH1IENO	Channel 1 Timer 0 Interrupt	Enable	Flag			
		This bit is set by software, cleared by software. If 1x32-bit timer, 2x16-bit timer, 4x8-bit timer mode is used, the bit field is set. CH1IENO = 0, Idle. CH1IENO = 1, Channel 1 timer 0 interrupt enabled.					
[3]	CHOIEN3	Channel 0 Timer 3 Interrupt	Enable	Flag			
		This bit is set by software, cleared by software. If 4x8-bit timer mode is used, the bit field is set. CHOIEN3 = 0, Idle. CHOIEN3 = 1, Channel 0 timer 3 interrupt enabled.					
[2]	CHOIEN2	Channel 0 Timer 2 Interrupt	Enable	Flag			
		This bit is set by software, cleared by software. If 4x8-bit timer mode is used, the bit field is set. CHOIEN2 = 0, Idle. CHOIEN2 = 1, Channel 0 timer 2 interrupt enabled.					
[1]	CHOIEN1	Channel 0 Timer 1 Interrupt	Enable	Flag			
		This bit is set by software, cleared by software. If 2x16-bit timer, 4x8-bit timer mode is used, the bit field is set. CHOIEN1 = 0, Idle. CHOIEN1 = 1, Channel 0 timer 1 interrupt enabled.					
[0]	CHOIENO	Channel 0 Timer 0 Interrupt	Enable	Flag			
		This bit is set by software, cleared by software. If 1x32-bit timer, 2x16-bit timer, 4x8-bit timer mode is used, the bit field is set. CHOIENO = 0, Idle. CHOIENO = 1, Channel 0 timer 0 interrupt enabled.					

Timer Interrupt Status Register

Register	Offset	RW	Description	Reset Value
INTSTAT	TMR_BA+0x01	R/W	Timer Interrupt Status Register	0x00

Bits	Flag	Description					
[7]	CH1INF3	Channel 1 Timer 3 Interrupt	Status	Flag			
		This bit is set by hardware, cleared by software (Write 1 to clear). CH1INF3 = 0, No effect. CH1INF3 = 1, Channel 1 timer 3 time up.					
[6]	CH1INF2	Channel 1 Timer 2 Interrupt	Status	Flag			
		This bit is set by hardware, cleared by software (Write 1 to clear). CH1INF2 = 0, No effect. CH1INF2 = 1, Channel 1 timer 2 time up.					
[5]	CH1INF1	Channel 1 Timer 1 Interrupt	Status	Flag			
		This bit is set by hardware, cleared by software (Write 1 to clear). CH1INF1 = 0, No effect. CH1INF1 = 1, Channel 1 timer 1 time up.					
[4]	CH1INFO	Channel 1 Timer 0 Interrupt	Status	Flag			
		This bit is set by hardware, cleared by software (Write 1 to clear). CH1INFO = 0, No effect. CH1INFO = 1, Channel 1 timer 0 time up.					
[3]	CHOINF3	Channel 0 Timer 3 Interrupt	Status	Flag			
		This bit is set by hardware, cleared by software (Write 1 to clear). CHOINF3 = 0, No effect. CHOINF3 = 1, Channel 0 timer 3 time up.					
[2]	CHOINF2	Channel 0 Timer 2 Interrupt	Status	Flag			
		This bit is set by hardware, cleared by software (Write 1 to clear). CHOINF2 = 0, No effect. CHOINF2 = 1, Channel 0 timer 2 time up.					
[1]	CHOINF1	Channel 0 Timer 1 Interrupt	Status	Flag			
		This bit is set by hardware, cleared by software (Write 1 to clear). CHOINF1 = 0, No effect. CHOINF1 = 1, Channel 0 timer 1 time up.					
[0]	CHOINFO	Channel 0 Timer 0 Interrupt	Status	Flag			
		This bit is set by hardware, cleared by software (Write 1 to clear). CHOINFO = 0, No effect. CHOINFO = 1, Channel 0 timer 0 time up.					

Timer Channel Enable Register

Register	Offset	RW	Description	Reset Value
CHEN	TMR_BA+0x02	R/W	Timer Channel Enable Register	0x00

Bits	Flag	Description
[7]	CH1TEN3 / CH1PEN	<p>Channel 1 Timer 3 / PWM Enable Flag</p> <p>This bit is set by software, cleared by software. If 4x8-bit timer mode is used, the bit field is set. CH1TEN3 = 0, Idle. CH1TEN3 = 1, Channel 1 timer 3 enable.</p> <p>If PWM mode is used, the bit field is set. CH1PEN = 0, Idle. CH1PEN = 1, Channel 1 PWM enable.</p>
[6]	CH1TEN2	<p>Channel 1 Timer 2 Enable Flag</p> <p>This bit is set by software, cleared by software. If 4x8-bit timer mode is used, the bit field is set. CH1TEN2 = 0, Idle. CH1TEN2 = 1, Channel 1 timer 2 enable.</p>
[5]	CH1TEN1	<p>Channel 1 Timer 1 Enable Flag</p> <p>This bit is set by software, cleared by software. If 2x16-bit timer, 4x8-bit timer mode is used, the bit field is set. CH1TEN1 = 0, Idle. CH1TEN1 = 1, Channel 1 timer 1 enable.</p>
[4]	CH1TEN0	<p>Channel 1 Timer 0 Enable Flag</p> <p>This bit is set by software, cleared by software. If 1x32-bit timer, 2x16-bit timer, 4x8-bit timer mode is used, the bit field is set. CH1TEN0 = 0, Idle. CH1TEN0 = 1, Channel 1 timer 0 enable.</p>
[3]	CH0TEN3 / CHOPEN	<p>Channel 0 Timer 3 / PWM Enable Flag</p> <p>This bit is set by software, cleared by software. If 4x8-bit timer mode is used, the bit field is set. CH0TEN3 = 0, Idle. CH0TEN3 = 1, Channel 0 timer 3 enable.</p> <p>If PWM mode is used, the bit field is set. CHOPEN = 0, Idle. CHOPEN = 1, Channel 0 PWM enable.</p>
[2]	CH0TEN2	<p>Channel 0 Timer 2 Enable Flag</p> <p>This bit is set by software, cleared by software. If 4x8-bit timer mode is used, the bit field is set. CH0TEN2 = 0, Idle. CH0TEN2 = 1, Channel 0 timer 2 enable.</p>
[1]	CH0TEN1	<p>Channel 0 Timer 1 Enable Flag</p> <p>This bit is set by software, cleared by software. If 2x16-bit timer, 4x8-bit timer mode is used, the bit field is set. CH0TEN1 = 0, Idle. CH0TEN1 = 1, Channel 0 timer 1 enable.</p>
[0]	CH0TEN0	<p>Channel 0 Timer 0 Enable Flag</p> <p>This bit is set by software, cleared by software. If 1x32-bit timer, 2x16-bit timer, 4x8-bit timer mode is used, the bit field is set. CH0TEN0 = 0, Idle. CH0TEN0 = 1, Channel 0 timer 0 enable.</p>

Note that a timer or PWM cannot be enabled if the corresponding channel does not exist or it is not a valid device in the channel mode. For example, Timer 1 of Channel 0 cannot be enabled when Channel 0 is set to the 32-bit Timer mode.

Timer Channel 0 Control Register

Register	Offset	RW	Description	Reset Value
CHOCTRL	TMR_BA+0x03	R/W	Timer Channel 0 Control Register	0x00

Bits	Flag	Description				
[7:5]	Reserved	Reserved.				
[4]	PWMPRK	Channel 0 PWM Park Value This bit is set by software, cleared by software. PWMPark = PWM park value, output of PWM when PWM is disabled.				
[3]	PWMPOL	Channel 0 PWM Polarity Flag This bit is set by hardware, cleared by software. PWMPOL = 0, PWM high pulse first. PWMPOL = 1, PWM low pulse first.				
[2:0]	CHMODE	Channel 0 Channel Mode Selection This bit is set by hardware, cleared by software. CHMode = 0, Reserved. CHMode = 1, 32-bit timer. CHMode = 2, 16-bit timers. CHMode = 3, 8-bit timers. CHMode = 4, PWM. CHMode = 5, Reserved. CHMode = 6, Mixed PWM/16-bit timer. CHMode = 7, Mixed PWM/8-bit timer.				

Timer Channel 1 Control Register

Register	Offset	RW	Description	Reset Value
CH1CTRL	TMR_BA+0x04	R/W	Timer Channel 1 Control Register	0x00

Bits	Flag	Description				
[7:5]	Reserved	Reserved.				
[4]	PWMPRK	Channel 1 PWM Park Value This bit is set by hardware, cleared by software. PWMPark = PWM park value, output of PWM when PWM is disabled.				
[3]	PWMPOL	Channel 1 PWM Polarity Flag This bit is set by hardware, cleared by software. PWMPOL = 0, PWM high pulse first. PWMPOL = 1, PWM low pulse first.				
[2:0]	CHMODE	Channel 1 Channel Mode Selection This bit is set by hardware, cleared by software. CHMode = 0, Reserved. CHMode = 1, 32-bit timer. CHMode = 2, 16-bit timers. CHMode = 3, 8-bit timers. CHMode = 4, PWM. CHMode = 5, Reserved. CHMode = 6, Mixed PWM/16-bit timer. CHMode = 7, Mixed PWM/8-bit timer.				

Timer Channel 0 Reload x Register, x = 0, 1, 2, 3

Register	Offset	RW	Description	Reset Value
CH0RL0	TMR_BA+0x05	R/W	Timer Channel 0 Reload 0 Register	0x00

Register	Offset	RW	Description	Reset Value
CH0RL1	TMR_BA+0x06	R/W	Timer Channel 0 Reload 1 Register	0x00

Register	Offset	RW	Description	Reset Value
CH0RL2	TMR_BA+0x07	R/W	Timer Channel 0 Reload 2 Register	0x00

Register	Offset	RW	Description	Reset Value
CH0RL3	TMR_BA+0x08	R/W	Timer Channel 0 Reload 3 Register	0x00

Bits	Flag	Description
[7:0]	CH0RLx, x = 0, 1, 2, 3	Channel 0 Reload x Value, x = 0, 1, 2, 3

1. 1x32-bit Reload Value

- CH0RL32[31:0] = {CH0RL0, CH0RL1, CH0RL2, CH0RL3}

CH0RL0 is the most significant byte and CH0RL3 is the least significant byte.

2. 2x16-bit Reload Value

- CH0RL16_0[15:0] = {CH0RL0, CH0RL1}

CH0RL0 is the most significant byte and CH0RL1 is the least significant byte.

- CH0RL16_1[15:0] = {CH0RL2, CH0RL3}

CH0RL2 is the most significant byte and CH0RL3 is the least significant byte.

3. 4x8-bit Reload Value

- CH0RL8_0[7:0] = {CH0RL0}
- CH0RL8_1[7:0] = {CH0RL1}
- CH0RL8_2[7:0] = {CH0RL2}
- CH0RL8_3[7:0] = {CH0RL3}

Timer Channel 1 Reload x Register, x = 0, 1, 2, 3

Register	Offset	RW	Description	Reset Value
CH1RL0	TMR_BA+0x09	R/W	Timer Channel 1 Reload 0 Register	0x00

Register	Offset	RW	Description	Reset Value
CH1RL1	TMR_BA+0x0A	R/W	Timer Channel 1 Reload 1 Register	0x00

Register	Offset	RW	Description	Reset Value
CH1RL2	TMR_BA+0x0B	R/W	Timer Channel 1 Reload 2 Register	0x00

Register	Offset	RW	Description	Reset Value
CH1RL3	TMR_BA+0x0C	R/W	Timer Channel 1 Reload 3 Register	0x00

Bits	Flag	Description
[7:0]	CH1RLx, x = 0, 1, 2, 3	Channel 1 Reload x Value, x = 0, 1, 2, 3

1. 1x32-bit Reload Value

- CH1RL32[31:0] = {CH1RL0, CH1RL1, CH1RL2, CH1RL3}

CH1RL0 is the most significant byte and CH1RL3 is the least significant byte.

2. 2x16-bit Reload Value

- CH1RL16_0[15:0] = {CH1RL0, CH1RL1}

CH1RL0 is the most significant byte and CH1RL1 is the least significant byte.

- CH1RL16_1[15:0] = {CH1RL2, CH1RL3}

CH1RL2 is the most significant byte and CH1RL3 is the least significant byte.

3. 4x8-bit Reload Value

- CH1RL8_0[7:0] = {CH1RL0}
- CH1RL8_1[7:0] = {CH1RL1}
- CH1RL8_2[7:0] = {CH1RL2}
- CH1RL8_3[7:0] = {CH1RL3}

Timer Channel 0 Counter x Register, x = 0, 1, 2, 3

Register	Offset	RW	Description	Reset Value
CH0CNT0	TMR_BA+0x0D	R/W	Timer Channel 0 Counter 0 Register	0x00

Register	Offset	RW	Description	Reset Value
CH0CNT1	TMR_BA+0x0E	R/W	Timer Channel 0 Counter 1 Register	0x00

Register	Offset	RW	Description	Reset Value
CH0CNT2	TMR_BA+0x0F	R/W	Timer Channel 0 Counter 2 Register	0x00

Register	Offset	RW	Description	Reset Value
CH0CNT3	TMR_BA+0x10	R/W	Timer Channel 0 Counter 3 Register	0x00

Bits	Flag	Description
[7:0]	CH0CNTx, x = 0, 1, 2, 3	Channel 0 Counter x Value, x = 0, 1, 2, 3

1. 1x32-bit Counter Value

- CH0CNT32[31:0] = {CH0CNT0, CH0CNT1, CH0CNT2, CH0CNT3}

CH0CNT0 is the most significant byte and Ch0CNT3 is the least significant byte.

2. 2x16-bit Counter Value

- CH0CNT16_0[15:0] = {CH0CNT0, CH0CNT1}

CH0CNT0 is the most significant byte and Ch0CNT1 is the least significant byte.

- CH0CNT16_1[15:0] = {CH0CNT2, CH0CNT3}

CH0CNT2 is the most significant byte and Ch0CNT3 is the least significant byte.

3. 4x8-bit Counter Value

- CH0CNT8_0[7:0] = {CH0CNT0}
- CH0CNT8_1[7:0] = {CH0CNT1}
- CH0CNT8_2[7:0] = {CH0CNT2}
- CH0CNT8_3[7:0] = {CH0CNT3}

Timer Channel 1 Counter x Register, x = 0, 1, 2, 3

Register	Offset	RW	Description	Reset Value
CH1CNT0	TMR_BA+0x11	R/W	Timer Channel 1 Counter 0 Register	0x00

Register	Offset	RW	Description	Reset Value
CH1CNT1	TMR_BA+0x12	R/W	Timer Channel 1 Counter 1 Register	0x00

Register	Offset	RW	Description	Reset Value
CH1CNT2	TMR_BA+0x13	R/W	Timer Channel 1 Counter 2 Register	0x00

Register	Offset	RW	Description	Reset Value
CH1CNT3	TMR_BA+0x14	R/W	Timer Channel 1 Counter 3 Register	0x00

Bits	Flag	Description
[7:0]	CH1CNTx, x = 0, 1, 2, 3	Channel 1 Counter x Value, x = 0, 1, 2, 3

1. 1x32-bit Counter Value

- CH1CNT32[31:0] = {CH1CNT0, CH1CNT1, CH1CNT2, CH1CNT3}

CH1CNT0 is the most significant byte and Ch1CNT1 is the least significant byte.

2. 2x16-bit Counter Value

- CH1CNT16_0[15:0] = {CH1CNT0, CH1CNT1}

CH1CNT0 is the most significant byte and Ch1CNT1 is the least significant byte.

- CH1CNT16_1[15:0] = {CH1CNT2, CH1CNT3}

CH1CNT2 is the most significant byte and Ch1CNT3 is the least significant byte.

3. 4x8-bit Counter Value

- CH1CNT8_0[7:0] = {CH1CNT0}
- CH1CNT8_1[7:0] = {CH1CNT1}
- CH1CNT8_2[7:0] = {CH1CNT2}
- CH1CNT8_3[7:0] = {CH1CNT3}

6.11.3 Programming Model (Please refer to “Sample code project”)

Below describes the usages of TMR.

One-shot : TMR channel 0 32-bit Timer

Set CHMODE field of CHOCTRL Register to 1 (32-bit timer mode)

Set CH0RLx, x = 0, 1, 2, 3, to the value reloaded

Set CH0IENO field of INTEN Register to 1

Set CH0TENO field of CHEN Register to 1

TMR ISR :

Set CH0INTFO field of INTSTAT to 1 to clear interrupt flag

Set CH0TENO field of CHEN Register to 0

Periodic : TMR channel 0 16-bit Timer, channel 1 16-bit Timer

Set CHMODE field of CHOCTRL Register to 2 (16-bit timer mode)

Set CHMODE field of CH1CTRL Register to 2 (16-bit timer mode)

Set CH0RLx, x = 0, 1, to the value reloaded

Set CH1RLx, x = 0, 1, to the value reloaded

Set CH0IENO, CH1IENO field of INTEN Register to 1

Set CH0TENO, CH1TENO, field of CHEN Register to 1

TMR ISR :

Set CH0INTFO, CH1INTFO, field of INTSTAT to 1 to clear interrupt flag

PWM : TMR channel 0 PWM, channel 1 PWM

Set CHMODE field of CHOCTRL Register to 4 (PWM mode)

Set CHMODE field of CH1CTRL Register to 4 (PWM mode)

Set CH0RLx, x = 0, 1, to channel 0 PWM low period

Set CH0RLx, x = 2, 3, to channel 0 PWM high period

Set CH1RLx, x = 0, 1, to channel 1 PWM low period

Set CH1RLx, x = 2, 3, to channel 1 PWM high period

Set CHOPEN, CH1PEN, field of CHEN Register to 1

Event counting with capture (software assist)

TMR Setting :

Set CHMODE field of CHOCTRL Register to 1 (32-bit timer mode)

Set CH0RLx, x = 0, 1, 2, 3, to the value 0xFF

EINT Setting :

Set corresponding EINT pin to “Rising and Falling trigger mode”

EINT ISR : (Rising Edge Triggered)

Set CHOTENO field of CHEN Register to 1

EINT ISR : (Falling Edge Triggered)

*1Read CH0CNTx, x = 0, 1, 2, 3, for 32-bit capture counter value

Set CHOTENO field of CHEN Register to 0

*1 User must read counter value first and then disable CHOTENO flag.

6.12 STN LCD Controller (LCM)

6.12.1 Overview

The FE81 series incorporates a STN LCD driver with the display requirements in various applications. This LCD driver has 4-COM and 20-SEG signals with several configurations providing direct driving and easy to use of interfacing to wide range of STN LCDs. Below lists the configuration of the LCD driver supported by FE81 series.

COM#	SEG#	Refresh Rate	Bias Type	Duty	Bias
4	20	60/120 (Hz)	R	1/4	1/3 or 1/2

Figure 6.12-1 illustrates R-type configurations with 1/3 and 1/2 bias type. User can choose one of the configurations based on the LCD selected.

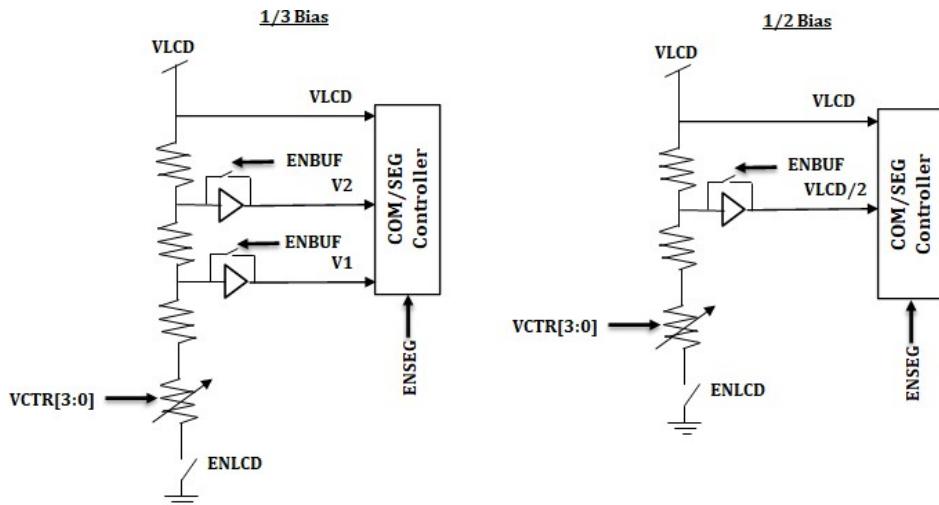


Figure 6.12-1 R-Type 1/3 or 1/2 Bias Configuration

While using the LCD driver, a frame buffer must be maintained for the data to be displayed on the LCD. While setting the corresponding bit field of the frame buffer, the related COM and SEG signal are selected to light on the corresponding pixel of the LCD. The FE81 series has dedicated frame buffer memory without having to be shared with application data, which decreasing the available size of SRAM memory. Figure 6.12-2 depicts the memory map of the frame buffer. The base address of LCD driver is 0xF200.

	bit3	bit2	bit1	bit0	
LCM_BASE + 0x10					SEQ0
LCM_BASE + 0x11					SEQ1
LCM_BASE + 0x12					SEQ2
LCM_BASE + 0x13					SEQ3
⋮					⋮
LCM_BASE + 0x22					SEQ18
LCM_BASE + 0x23					SEQ19
	COM3	COM2	COM1	COM0	

Figure 6.12-2 LCD Frame Buffer Memory Map

Figure 6.12-3 illustrates an example for lighting on the LCD with frame buffer setting. This LCD is controlled by 4 COMs (COM0 ~ COM4) and 8 SEGs (SEG0 ~ SEG7). If 36.75 is displayed on the LCD, the corresponding COM and SEG signals should be selected as the following table shows.

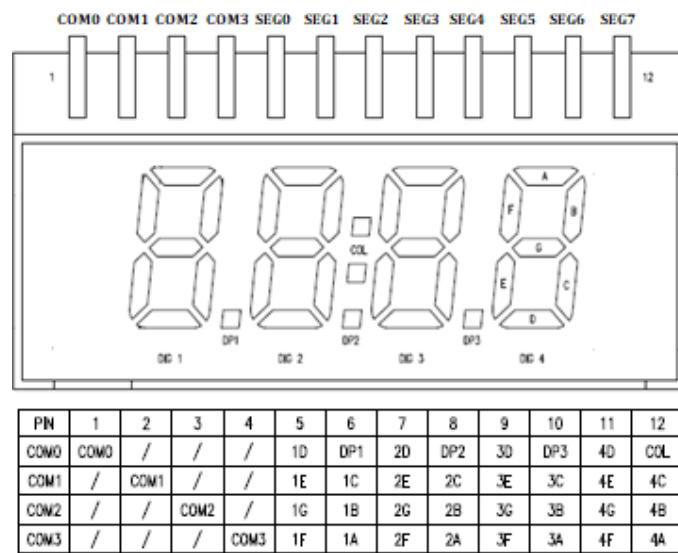


Figure 6.12-3 LCD Example of Frame Buffer

Segment	DIG1	DIG2	DIG3	DIG4
A	1A	2A	3A	4A
B	1B	-	3B	-
C	1C	2C	3C	4C
D	1D	2D	-	4D
E	-	2E	-	-
F	-	2F	3F	4F
G	1G	2G	-	4G
DPx	-	DP2	-	-

As the table indicated above, the frame buffer should be set as follows. With the setting, 36.75 is showed on LCD.

		COM0	COM1	COM2	COM3
DIG1	SEG0	0	0	1 (1G)	0
	SEG1	0	1 (1C)	1 (1B)	1 (1A)
DIG2	SEG2	1 (2D)	1 (2E)	1 (2G)	1 (2F)
	SEG3	1 (DP2)	1 (2C)	0	1 (2A)
DIG3	SEG4	0	0	0	1 (3F)
	SEG5	0	1 (3C)	1 (3B)	1 (3A)
DIG4	SEG6	1 (4D)	0	1 (4G)	1 (4F)
	SEG7	0	1 (4C)	0	1 (4A)

6.12.2 Register Map and Description

Base Address (LCM_BA) : 0xF200				
Register	Offset	RW	Description	Reset Value
LCMCTRL0	LCM_BA+0x00	R/W	LCD Controller Control 0 Register	0x00
LCMCTRL1	LCM_BA+0x01	R/W	LCD Controller Control 1 Register	0x00
SEQBUFO0	LCM_BA+0x10	R/W	LCD Controller Frame Buffer 0 Register	0x00
SEQBUFO1	LCM_BA+0x11	R/W	LCD Controller Frame Buffer 1 Register	0x00
SEQBUFO2	LCM_BA+0x12	R/W	LCD Controller Frame Buffer 2 Register	0x00
SEQBUFO3	LCM_BA+0x13	R/W	LCD Controller Frame Buffer 3 Register	0x00
SEQBUFO4	LCM_BA+0x14	R/W	LCD Controller Frame Buffer 4 Register	0x00
SEQBUFO5	LCM_BA+0x15	R/W	LCD Controller Frame Buffer 5 Register	0x00
SEQBUFO6	LCM_BA+0x16	R/W	LCD Controller Frame Buffer 6 Register	0x00
SEQBUFO7	LCM_BA+0x17	R/W	LCD Controller Frame Buffer 7 Register	0x00
SEQBUFO8	LCM_BA+0x18	R/W	LCD Controller Frame Buffer 8 Register	0x00
SEQBUFO9	LCM_BA+0x19	R/W	LCD Controller Frame Buffer 9 Register	0x00
SEQBUFO10	LCM_BA+0x1A	R/W	LCD Controller Frame Buffer 10 Register	0x00
SEQBUFO11	LCM_BA+0x1B	R/W	LCD Controller Frame Buffer 11 Register	0x00
SEQBUFO12	LCM_BA+0x1C	R/W	LCD Controller Frame Buffer 12 Register	0x00
SEQBUFO13	LCM_BA+0x1D	R/W	LCD Controller Frame Buffer 13 Register	0x00
SEQBUFO14	LCM_BA+0x1E	R/W	LCD Controller Frame Buffer 14 Register	0x00
SEQBUFO15	LCM_BA+0x1F	R/W	LCD Controller Frame Buffer 15 Register	0x00
SEQBUFO16	LCM_BA+0x20	R/W	LCD Controller Frame Buffer 16 Register	0x00
SEQBUFO17	LCM_BA+0x21	R/W	LCD Controller Frame Buffer 17 Register	0x00
SEQBUFO18	LCM_BA+0x22	R/W	LCD Controller Frame Buffer 18 Register	0x00
SEQBUFO19	LCM_BA+0x23	R/W	LCD Controller Frame Buffer 19 Register	0x00

LCD Controller Control 0 Register

Register	Offset	RW	Description	Reset Value
LCMCTRL0	LCM_BA+0x00	R/W	LCD Controller Control 0 Register	0x00

Bits	Flag	Description
[7]	Reserved	Reserved.
[6]	ENBUF	LCD High Driving Strength Enable Flag This bit is set by software, cleared by software. High driving strength is set by this flag. ENBUF = 0, Low driving strength. ENBUF = 1, High driving strength.
[5]	FREQ	LCD Frame Rate Selection Flag This bit is set by software, cleared by software. FREQ = 0, 60Hz. FREQ = 1, 120Hz.
[4]	LEVEL	LCD Bias Selection Flag This bit is set by software, cleared by software. LEVEL = 0, 1/3 bias. LEVEL = 1, ½ bias.
[3:0]	VCTR	LCD DC Voltage TRIM Flag This bit is set by software, cleared by software. VCTR = 0, TRIM value 0. VCTR = 1, TRIM value 1. VCTR = 2, TRIM value 2. VCTR = 3, TRIM value 3. VCTR = 4, TRIM value 4. VCTR = 5, TRIM value 5. VCTR = 6, TRIM value 6. VCTR = 7, TRIM value 7.

LCD Controller Control 1 Register

Register	Offset	RW	Description	Reset Value
LCMCTRL1	LCM_BA+0x01	R/W	LCD Controller Control 1 Register	0x00

Bits	Flag	Description	Flag
[7:1]	Reserved	Reserved.	
[0]	LCMEN	LCD Enable This bit is set by software, cleared by software. LCMEN = 0, LCD driver disabled. LCMEN = 1, LCD driver enabled.	

LCD Controller Frame Buffer Register

Register	Offset	RW	Description	Reset Value
SEQBUF00	LCM_BA+0x10	R/W	LCD Controller Frame Buffer 0 Register	0x00
SEQBUF01	LCM_BA+0x11	R/W	LCD Controller Frame Buffer 1 Register	0x00
SEQBUF02	LCM_BA+0x12	R/W	LCD Controller Frame Buffer 2 Register	0x00
SEQBUF03	LCM_BA+0x13	R/W	LCD Controller Frame Buffer 3 Register	0x00
SEQBUF04	LCM_BA+0x14	R/W	LCD Controller Frame Buffer 4 Register	0x00
SEQBUF05	LCM_BA+0x15	R/W	LCD Controller Frame Buffer 5 Register	0x00
SEQBUF06	LCM_BA+0x16	R/W	LCD Controller Frame Buffer 6 Register	0x00
SEQBUF07	LCM_BA+0x17	R/W	LCD Controller Frame Buffer 7 Register	0x00
SEQBUF08	LCM_BA+0x18	R/W	LCD Controller Frame Buffer 8 Register	0x00
SEQBUF09	LCM_BA+0x19	R/W	LCD Controller Frame Buffer 9 Register	0x00
SEQBUF10	LCM_BA+0x1A	R/W	LCD Controller Frame Buffer 10 Register	0x00
SEQBUF11	LCM_BA+0x1B	R/W	LCD Controller Frame Buffer 11 Register	0x00
SEQBUF12	LCM_BA+0x1C	R/W	LCD Controller Frame Buffer 12 Register	0x00
SEQBUF13	LCM_BA+0x1D	R/W	LCD Controller Frame Buffer 13 Register	0x00
SEQBUF14	LCM_BA+0x1E	R/W	LCD Controller Frame Buffer 14 Register	0x00
SEQBUF15	LCM_BA+0x1F	R/W	LCD Controller Frame Buffer 15 Register	0x00
SEQBUF16	LCM_BA+0x20	R/W	LCD Controller Frame Buffer 16 Register	0x00
SEQBUF17	LCM_BA+0x21	R/W	LCD Controller Frame Buffer 17 Register	0x00
SEQBUF18	LCM_BA+0x22	R/W	LCD Controller Frame Buffer 18 Register	0x00
SEQBUF19	LCM_BA+0x23	R/W	LCD Controller Frame Buffer 19 Register	0x00

Bits	Flag	Description
[7:4]	Reserved	Reserved.
[3:0]	FRAMEBUF _n n = 0 ~ 19	Frame Buffer Field Writing this field can control corresponding COM and SEG signals. Refer to 6.12.1 and external PCB circuit for controlling the LCD module.

6.12.3 Programming Model (Please refer to “Sample code project”)

LCD light on procedure

Step 1 :

Set corresponding ENBUF, FREQ, LEVEL, VCTR field of LCMCTRL0 Register.

Step 2 :

Reset frame buffer, SEQBUF00 ~ SEQBUF19

Step 3 :

Set LCMEN field of LCMCTRL1 Register

Step 4 :

Based on the circuit of PCBA, lighting on the LCD by setting the bit field of frame buffer.

LCD light off procedure

Step 1 :

Disable LCMEN field of LCMCTRL1 Register

6.13 I2C Interface Controller (I2C)

6.13.1 Overview

The FE81 series supports an I2C controller with master or slave device.

Features of I2C Controller

- Support Standard-mode (100 Kb/s), Fast-mode (400 Kb/s) and Fast-mode Plus (1 Mb/s) protocols*1*2
- Programmable Master or Slave mode
- Support 7-bit and 10-bit addressing mode
- Support general call address
- Auto clock stretching
- Programmable clock or data timing
- 8-byte hardware transmit or receive FIFOs

*1 Note that, while Fast-mode is selected, the I2C clock source must be at least 4MHz

*2 Note that, while Fast-mode Plus is selected, the I2C clock source must be at least 12MHz

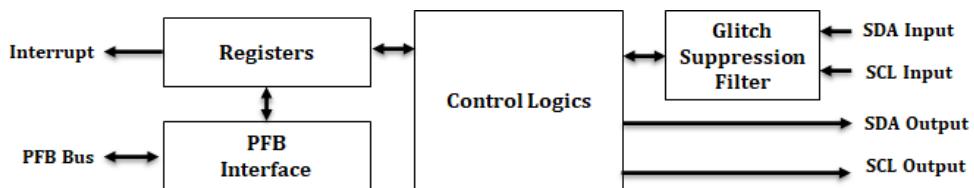


Figure 6.13-1 I2C Block Diagram

I2C Master

As an I2C master, the controller provides an efficient way to initiate I2C transactions. Every transaction can be delineated by four phases: Start, Address, Data and Stop. At the Start phase, a START condition is generated. At the Address phase, an address is sent. At the Data phase, one or more data bytes are transferred. At the Stop phase, a STOP condition is generated. The existence of each phase can be controlled independently.

I2C Slave

As an I2C slave, the controller is addressed when the address byte of an I2C transaction matches the Address Register. An Address Hit interrupt can be generated for the software to prepare for the subsequent operations.

General Call Address

The General Call Address is a special address to address all slave devices on the I2C-bus. The I2C controller at the slave mode will respond with an ACK to the general call address and set the GENCALL field of the INTSTAT1 Register.

Auto Clock Stretch

The I2C controller can automatically pause bus transactions by stretching clocks on the I2C-bus when the software is not ready for the next byte of data or when the FIFO is full. Auto Clock Stretch is supported at both the master mode and the slave mode.

Auto-ACK

With Auto-ACK, the I2C controller automatically generates proper acknowledgements for each byte received. Every received byte will be responded with an ACK, except for the last byte, which should be responded with a NACK according to the I2C-bus protocol. On the other hand, if the software needs to determine each byte's acknowledgement status, Auto-ACK can be turned off by enabling the Byte Receive Interrupt.

6.13.2 Register Map and Description

Base Address (I2C_BA) : 0xEE00				
Register	Offset	RW	Description	Reset Value
HWCFG	I2CS_BA+0x00	R	I2C Hardware FIFO Configuration Register	0x00
INTENO	I2CS_BA+0x01	R/W	I2C Interrupt Enable 0 Register	0x00
INTEN1	I2CS_BA+0x02	R/W	I2C Interrupt Enable 1 Register	0x00
INTSTAT0	I2CS_BA+0x03	R/W	I2C Interrupt Status 0 Register	0x00
INTSTAT1	I2CS_BA+0x04	R/W	I2C Interrupt Status 1 Register	0x00
SLVADRO	I2CS_BA+0x05	R/W	I2C Slave Address 0 Register	0x00
SLVADR1	I2CS_BA+0x06	R/W	I2C Slave Address 1 Register	0x00
I2CDAT	I2CS_BA+0x07	R/W	I2C Data Register	0x00
DATCNT	I2CS_BA+0x08	R/W	I2C Data Count Register	0x00
I2CCTRL	I2CS_BA+0x09	R/W	I2C Control Register	0x00
I2CCMD	I2CS_BA+0x0A	R/W	I2C Command Register	0x00
I2CSETUP0	I2CS_BA+0x0B	R/W	I2C Setup 0 Register	0x00
I2CSETUP1	I2CS_BA+0x0C	R/W	I2C Setup 1 Register	0x00
I2CSETUP2	I2CS_BA+0x0D	R/W	I2C Setup 2 Register	0x00
I2CSETUP3	I2CS_BA+0x0E	R/W	I2C Setup 3 Register	0x00

I2C Hardware FIFO Configuration Register

Register	Offset	RW	Description	Reset Value
HWCFG	I2CS_BA+0x00	R	I2C Hardware FIFO Configuration Register	0x00

Bits	Flag	Description
[7:2]	Reserved	Reserved.
[1:0]	FIFOSIZE	FIFO FIFOSIZE = 2, FIFO size is 8-byte. Size

I2C Interrupt Enable 0 Register

Register	Offset	RW	Description	Reset Value
INTENO	I2CS_BA+0x01	R/W	I2C Interrupt Enable 0 Register	0x00

Bits	Flag	Description					
[7]	BTRN	I2C Byte Transmit Interrupt	Enable	Flag			
		This bit is set by software, cleared by software.					
		BTRN = 0, Idle.					
		BTRN = 1, I2C byte transmit interrupt enabled.					
[6]	START	I2C Start Condition Interrupt	Enable	Flag			
		This bit is set by software, cleared by software.					
		START = 0, Idle.					
		START = 1, I2C start condition interrupt enabled.					
[5]	STOP	I2C Stop Condition Interrupt	Enable	Flag			
		This bit is set by software, cleared by software.					
		STOP = 0, Idle.					
		STOP = 1, I2C stop condition interrupt enabled.					
[4]	ARBLOS	I2C Arbitration Lose Interrupt	Enable	Flag			
		This bit is set by software, cleared by software.					
		Master : Interrupts when the controller loses the arbitration.					
		Slave : Arbitration lose interrupt is not available at the slave mode.					
		ARBLOS = 0, Idle.					
		ARBLOS = 1, I2C arbitration lose interrupt enabled.					
[3]	ADR HIT	I2C Address Hit Interrupt	Enable	Flag			
		This bit is set by software, cleared by software.					
		Master : Interrupts when the addressed slave returned an ACK.					
		Slave : Interrupts when the controller is addressed.					
		ADR HIT = 0, Idle.					
		ADR HIT = 1, I2C address hit interrupt enabled.					
[2]	FIFOHAF	I2C FIFO Half Interrupt	Enable	Flag			
		This bit is set by software, cleared by software.					
		Receiver : Interrupts when the FIFO is half-full					
		Transmitter : Interrupts when the FIFO is half-empty					
		This interrupt depends on the transaction direction; do not enable this interrupt unless the transfer direction is determined, otherwise unintended interrupts may be triggered.					
		FIFOHAF = 0, Idle.					
		FIFOHAF = 1, I2C FIFO half interrupt enabled.					
[1]	FIFOFUL	I2C FIFO Full Interrupt	Enable	Flag			
		This bit is set by software, cleared by software.					
		FIFOFUL = 0, Idle.					
		FIFOFUL = 1, I2C FIFO full interrupt enabled.					
[0]	FIFOEMP	I2C FIFO Empty Interrupt	Enable	Flag			
		This bit is set by software, cleared by software.					
		FIFOEMP = 0, Idle.					
		FIFOEMP = 1, I2C FIFO empty interrupt enabled.					

I2C Interrupt Enable 1 Register

Register	Offset	RW	Description	Reset Value
INTEN1	I2CS_BA+0x02	R/W	I2C Interrupt Enable 1 Register	0x00

Bits	Flag	Description
[7:2]	Reserved	Reserved.
[1]	CMPL	I2C Completion Interrupt Enable Flag This bit is set by software, cleared by software. Master : Interrupts when a transaction is issued without losing the bus arbitration. Slave : Interrupts when a transaction addressing the controller completes. CMPL = 0, Idle. CMPL = 1, I2C completion interrupt enabled.
[0]	BRCV	I2C Byte Receive Interrupt Enable Flag This bit is set by software, cleared by software. Auto-ACK will be disabled if this interrupt is enabled, that is, the software needs to ACK/NACK the received byte manually. BRCV = 0, Idle. BRCV = 1, I2C byte receive interrupt enabled.

I2C Interrupt Status 0 Register

Register	Offset	RW	Description	Reset Value
INTSTAT0	I2CS_BA+0x03	R/W	I2C Interrupt Status 0 Register	0x00

Bits	Flag	Description			
[7]	BTRNF	I2C Byte Transmit Interrupt	Flag	This bit is read by software, cleared by software (Write 1 to clear). BTRNF = 0, Idle. BTRNF = 1, I2C byte transmit interrupt triggered.	
[6]	STARTF	I2C Start Condition Interrupt	Flag	This bit is read by software, cleared by software (Write 1 to clear). STARTF = 0, Idle. STARTF = 1, I2C start condition interrupt triggered.	
[5]	STOPF	I2C Stop Condition Interrupt	Flag	This bit is read by software, cleared by software (Write 1 to clear). STOPF = 0, Idle. STOPF = 1, I2C stop condition interrupt triggered.	
[4]	ARBLOSF	I2C Arbitration Lose Interrupt	Flag	This bit is read by software, cleared by software (Write 1 to clear). ARBLOSF = 0, Idle. ARBLOSF = 1, I2C arbitration lose interrupt triggered.	
[3]	ADRHITF	I2C Address Hit Interrupt	Flag	This bit is read by software, cleared by software (Write 1 to clear). ADRHITF = 0, Idle. ADRHITF = 1, I2C address hit interrupt triggered.	
[2]	FIFOHAFF	I2C FIFO Half Interrupt	Flag	This bit is read only. FIFOHAFF = 0, Idle. FIFOHAFF = 1, I2C FIFO half interrupt triggered.	
[1]	FIFOFULF	I2C FIFO Full Interrupt	Flag	This bit is read only. FIFOFULF = 0, Idle. FIFOFULF = 1, I2C FIFO full interrupt triggered.	
[0]	FIFOEMPF	I2C FIFO Empty Interrupt	Flag	This bit is read only. FIFOEMPF = 0, Idle. FIFOEMPF = 1, I2C FIFO empty interrupt triggered.	

I2C Interrupt Status 1 Register

Register	Offset	RW	Description	Reset Value
INTSTAT1	I2CS_BA+0x04	R/W	I2C Interrupt Status 1 Register	0x00

Bits	Flag	Description			
[7]	Reserved	Reserved.			
[6]	LINESDA	I2C	SDA	Line	Status Flag
		This bit is read only. LINESDA = 0, Low. LINESDA = 1, High.			
[5]	LINESCL	I2C	SCL	Line	Status Flag
		This bit is read only. LINESCL = 0, Low. LINESCL = 1, High.			
[4]	GENCALL	I2C	General	Call	Flag
		This bit is read only. GENCALL = 0, Not general call. GENCALL = 1, General call.			
[3]	BUSBUSY	I2C	Bus	Busy	Flag
		This bit is read only. The bus is busy when a START condition is on I2C bus and it ends when a STOP condition is seen on bus. BUSBUSY = 0, Not busy. BUSBUSY = 1, Busy.			
[2]	ACK	I2C	ACK		Flag
		This bit is read only. ACK = 0, NACK. ACK = 1, ACK.			
[1]	CMPLF	I2C	Completion	Interrupt	Flag
		This bit is read by software, cleared by software (Write 1 to clear). Master : Indicate a transaction is issued without losing arbitration. Slave : Indicate a transaction addressing the controller completes. This bit must be cleared to receive the next transaction; otherwise, the next incoming transaction will be blocked. CMPLF = 0, Idle. CMPLF = 1, I2C completion interrupt triggered.			
[0]	BRCVF	I2C	Byte	Receive	Interrupt Flag
		This bit is read by software, cleared by software (Write 1 to clear). BYTERECVF = 0, Idle. BYTERECVF = 1, I2C byte receive interrupt triggered.			

I2C Slave Address 0 Register

Register	Offset	RW	Description	Reset Value
SLVADRO	I2CS_BA+0x05	R/W	I2C Slave Address 0 Register	0x00

Bits	Flag	Description
[7:0]	SLVADRL	I2C Slave Address Low Register This bit is set by software, cleared by software. For 7-bit addressing mode, the most significant 3-bit are ignored.

I2C Slave Address 1 Register

Register	Offset	RW	Description	Reset Value
SLVADR1	I2CS_BA+0x06	R/W	I2C Slave Address 1 Register	0x00

Bits	Flag	Description
[7:0]	SLVADRH	I2C Slave Address High Register This bit is set by software, cleared by software. For 7-bit addressing mode, the most significant 3-bit are ignored.

I2C Data Register

Register	Offset	RW	Description	Reset Value
I2CDAT	I2CS_BA+0x07	R/W	I2C Data Register	0x00

Bits	Flag	Description		
[7:0]	I2CDAT	I2C	Data	Register
		This bit is set by software.		
		Write this register to put one byte to the FIFO.		
		Read this register to get one byte from the FIFO.		

I2C Data Count Register

Register	Offset	RW	Description	Reset Value
DATCNT	I2CS_BA+0x08	R/W	I2C Data Count Register	0x00

Bits	Flag	Description		
[7:0]	DATCNT	I2C	Data Count	Register
		This bit is set by software.		
		Master : The number of bytes to transmit/receive. 0 means 256 bytes.		
		DataCnt will be decreased by one for each byte transmitted/received.		
		Slave : The number of bytes transmitted/received from the bus master. It is		
		reset to 0 when the controller is addressed and then increased by one for		
		each byte of data transmitted/received.		

I2C Control Register

Register	Offset	RW	Description	Reset Value
I2CCTRL	I2CS_BA+0x09	R/W	I2C Control Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4]	PHSTART	I2C Send Start Condition Enable Flag (Master Mode Only) This bit is set by software, cleared by hardware. PHSTART = 0, Idle. PHSTART = 1, I2C send start condition.
[3]	PHADR	I2C Send Address After Start Condition Enable Flag (Master Mode Only) This bit is set by software, cleared by hardware. PHADR = 0, Idle. PHADR = 1, I2C send address phase after start condition.
[2]	PHDAT	I2C Send Data After Address Phase Enable Flag (Master Mode Only) This bit is set by software, cleared by hardware. PHDAT = 0, Idle. PHDAT = 1, I2C send data phase after address phase.
[1]	PHSTOP	I2C Send Stop Condition Enable Flag (Master Mode Only) This bit is set by software, cleared by hardware. PHSTOP = 0, Idle. PHSTOP = 1, I2C send stop condition.
[0]	DIR	I2C Transaction Direction Flag This bit is set by software, cleared by software. Master : DIR = 0, Transmitter. DIR = 1, Receiver. Slave : DIR = 0, Receiver. DIR = 1, Transmitter.

I2C Command Register

Register	Offset	RW	Description	Reset Value
I2CCMD	I2CS_BA+0x0A	R/W	I2C Command Register	0x00

Bits	Flag	Description		
[7:0]	I2CCMD	I2C This bit is set by software. 0x0: no action 0x1: issue a data transaction (Master only) 0x2: respond with an ACK to the received byte 0x3: respond with a NACK to the received byte 0x4: clear the FIFO 0x5: reset the I2C controller (abort current transaction, set the SDA and SCL line to the open-drain mode, clear the Status Register, Interrupt Enable Register and empty the FIFO) When issuing a data transaction by writing 0x1 to this register, the CMD field stays at 0x1 for the duration of the entire transaction, and it is only cleared to 0x0 after when the transaction has completed or when the controller loses the arbitration. Note: No transaction will be issued by the controller when all phases (Start, Address, Data and Stop) are disabled.	Command	Register

I2C Setup 0 Register

Register	Offset	RW	Description	Reset Value
I2CSETUP0	I2CS_BA+0x0B	R/W	I2C Setup 0 Register	0x00

Bits	Flag	Description		
[7:3]	Reserved	Reserved.		
[2]	MASTER	I2C Master/Slave Selection This bit is set by software, cleared by hardware. MASTER = 0, Master mode. MASTER = 1, Slave mode.	Flag	
[1]	ADDRING	I2C Addressing Mode This bit is set by software, cleared by hardware. ADDRING = 0, 7-bit addressing mode. ADDRING = 1, 10-bit addressing mode.	Flag	
[0]	I2CEN	I2C Enable This bit is set by software, cleared by software. I2CEN = 0, I2C idle. I2CEN = 1, I2C enabled.	Flag	

I2C Setup 205 Register

Register	Offset	RW	Description	Reset Value
I2CSETUP1	I2CS_BA+0x0C	R/W	I2C Setup 1 Register	0x00

Bits	Flag	Description
[7:0]	T_SCLHi	I2C SCL High Period Register (Master Mode Only) This bit is set by software, cleared by software. SCL HIGH period = $(4 + T_{SP} + T_{SCLHi}) * t_{pclk}$ The T_SCLHi value must be greater than T_SP and T_HDDAT values.

I2C Setup 206 Register

Register	Offset	RW	Description	Reset Value
I2CSETUP2	I2CS_BA+0x0D	R/W	I2C Setup 2 Register	0x00

Bits	Flag	Description
[7]	Reserved	Reserved.
[6:2]	T_HDDAT	I2C Data Hold Time Register This bit is set by software, cleared by software. T_HDDAT defines the data hold time after SCL goes LOW Hold time = $(4 + T_{SP} + T_{HDDAT}) * tpclk$
[1]	T_SCLRAT	I2C SCL Low Period Register (Master Mode Only) This bit is set by software, cleared by software. The LOW period of the generated SCL clock is defined by the combination of T_SCLRAT and T_SCLHi values. When T_SCLRAT = 0, the LOW period is equal to HIGH period. When T_SCLRAT = 1, the LOW period is roughly two times of HIGH period. SCL LOW period = $(4 + T_{SP} + T_{SCLHi} * ratio) * tpclk$ T_SCLRAT = 0, LOW period is equal to HIGH period (ratio = 1). T_SCLRAT = 1, LOW period is roughly two times of HIGH period (ratio = 2).
[0]	T_SCLHi	I2C SCL High Period Register (Master Mode Only) This bit is set by software, cleared by software. SCL HIGH period = $(4 + T_{SP} + T_{SCLHi}) * tpclk$ Note : The T_SCLHi value must be greater than T_SP and T_HDDAT values.

I2C Setup 207 Register

Register	Offset	RW	Description	Reset Value
I2CSETUP3	I2CS_BA+0x0E	R/W	I2C Setup 3 Register	0x00

Bits	Flag	Description			
[7:3]	T_DATSETUPT	I2C Data Setup Time Register	This bit is set by software, cleared by software. Setup time = $(4 + T_{SP} + T_{DATSETUPT}) * tpclk$ tpclk = PCLK period		
[2:0]	T_SP	I2C Pulse Width of Spikes Register	This bit is set by software, cleared by software. T_{SP} defines the pulse width of spikes that must be suppressed by the input filter Pulse width = $T_{SP} * tpclk$		

6.13.3 Programming Model (Please refer to “Sample code project”)

Before enabling the I2C controller, user must setup the I2C-bus timing parameters by programming the setup register. As an I2C slave, the spike suppression width, the data setup time and the data hold time must be programmed properly according to the PFB clock frequency and the speed of the I2C-bus. As an I2C master, the I2C-bus clock frequency must be programmed as well.

The following descriptions show how to determine the setup register to meet the I2C-bus timing parameters. All the examples assume that the PFB clock frequency is 12MHz, i.e. the PFB clock period is 83ns. If the PFB clock frequency of your design is not 12MHz, please derive the register fields accordingly.

Spike Suppression Width

Table below shows the pulse width of spikes that must be suppressed by the input filter. For the Fast-mode and the Fast-mode Plus, spikes less than 50ns must be suppressed. i.e.

$$T_{SP} = 50\text{ns}/83\text{ns} = 0$$

Symbol	Standard		Fast		Fast-Plus	
	Min	Max	Min	Max	Min	Max
T_SP	-	-	0ns	50ns	0ns	50ns

Data Setup Time

Data setup time defines the time in which the SDA should be held steady before the SCL rising edge.

Table below shows the timing parameters for the data setup time. The equation of data setup time is:

Symbol	Standard		Fast		Fast-Plus	
	Min	Max	Min	Max	Min	Max
T_DATSETUPT	250ns	-	100ns	-	50ns	-

$$\text{Setup time} = (4 + T_{SP} + T_{DATSETUPT}) * \text{tpclk}$$

For the Standard-mode,

$$250\text{ns} = (4 + 0 + T_{DATSETUPT}) * 83\text{ns}$$

$$\text{Then, } T_{DATSETUPT} = 0$$

Data Hold Time

Data hold time defines the time in which the SDA should be held steady after the SCL falling edge.

Table below shows the timing parameters for the data hold time. The equation of data hold time is:

Symbol	Standard		Fast		Fast-Plus	
	Min	Max	Min	Max	Min	Max
T_HDDAT	300ns	-	300ns	-	0	-

$$\text{Hold time} = (4 + T_{SP} + T_{HDDAT}) * \text{tpclk}$$

For the Standard-mode,

$$300\text{ns} = (4 + 0 + T_{HDDAT}) * 83\text{ns}$$

Then, $T_{HDDAT} = 0$

I2C Bus Clock Frequency

The I2C-bus clock frequency is specified by the tHIGH and tLOW parameters, which are shown in Table below and can be achieved through the T_SCLHi and T_SCLRAT fields of the setup register.

Symbol	Standard		Fast		Fast-Plus	
	Min	Max	Min	Max	Min	Max
tHIGH	4.0us	-	0.6us	-	0.26us	-
tLOW	4.7us	-	1.3us	-	0.5us	-

For the Standard-mode, the minimum requirements of tHIGH and tLOW are close, so T_SCLRAT can be set to 0 (i.e. ratio = 1) to simplify the settings. The equations for the SCL periods are:

$$\text{SCL HIGH period} = (4 + T_{SP} + T_{SCLHi}) * \text{tpclk} \geq 4000\text{ns}$$

$$\text{SCL LOW period} = (4 + T_{SP} + T_{SCLHi} * \text{ratio}) * \text{tpclk} \geq 4700\text{ns}$$

Substitute 0 for T_SP, 1 for ratio and 83ns for tpclk, the equations become:

$$(4 + 0 + T_{SCLHi}) * 83\text{ns} \geq 4000\text{ns}$$

$$(4 + 0 + T_{SCLHi} * 1) * 83\text{ns} \geq 4700\text{ns}$$

Then,

$$T_{SCLHi} \geq 53$$

For the Fast-mode, the minimum requirement of tLOW is about 2 times of tHIGH, so T_SCLRAT can be set to 1 (i.e. ratio = 2). The equations for the SCL periods are:

The following examples show two bus clock setups :

$$\text{SCL HIGH period} = (4 + T_{SP} + T_{SCLHi}) * \text{tpclk} \geq 600\text{ns}$$

$$\text{SCL LOW period} = (4 + T_{SP} + T_{SCLHi} * \text{ratio}) * \text{tpclk} \geq 1300\text{ns}$$

Substitute 0 for T_SP, 2 for ratio and 83ns for tpclk, the equations become:

$$(4 + 0 + T_{SCLHi}) * 83\text{ns} \geq 600\text{ns}$$

$$(4 + 0 + T_{SCLHi} * 2) * 83\text{ns} \geq 1300\text{ns}$$

Then,

$$T_{SCLHi} \geq 6$$

Master Transmit Mode

Step 1 : Set the setup register (I2CSETUP0 ~ I2CSETUP3)

Set Master = 1, I2CEN = 1, and related timing parameters.

Step 2 : Set data counter, direction and phase choices in the I2CCTRL Register and DATCNT Register

Set PHSTART = 1, PHADR = 1, PHDAT = 1, PHSTOP = 1, DIR = 0.

DATCNT = data counts in bytes.

Step 3 : Write I2C slave address SLVADRO Register

Step 4 : Enable the completion interrupt and FIFO empty interrupt in the interrupt enable register

Set CMPL = 1 in INTEN1 Register.

Set FIFOEMP = 1 in INTENO Register.

Step 5: Write to the I2CCMD Register to issue the transaction

Set 0x01 in I2CCMD Register.

Step 6 : Wait for interrupts

1. FIFO empty interrupt : push data into the FIFO by writing the data to the I2CDAT Register until the FIFO becomes full. If all data are pushed into the FIFO, disable the FIFO Empty Interrupt. Otherwise, repeat Step 6.
2. Completion interrupt : write 1 to the CMPLF field of the INTSTAT1 Register to clear the completion status and go to Step 7.

Step 7 : Disable all interrupts and check the DATCNT field of the DATCNT Register to know if all data are successfully transmitted

Master Receive Mode

Step 1 : Set the setup register (I2CSETUP0 ~ I2CSETUP3)

Set Master = 1, I2CEN = 1, and related timing parameters.

Step 2 : Set data counter, direction and phase choices in the I2CCTRL Register and DATCNT Register

Set PHSTART = 1, PHADR = 1, PHDAT = 1, PHSTOP = 1, DIR = 1.

DATCNT = data counts in bytes.

Step 3 : Write I2C slave address SLVADRO Register

Step 4 : Enable the completion interrupt and FIFO full interrupt in the interrupt enable register

Set CMPL = 1 in INTEN1 Register.

Set FIFOFUL = 1 in INTENO Register.

Step 5: Write to the I2CCMD Register to issue the transaction

Set 0x01 in I2CCMD Register.

Step 6 : Wait for interrupts

1. FIFO full interrupt (FIFOFULF) : get data from the FIFO by reading the I2CDAT Register until the FIFO becomes empty; repeat Step 6.
2. Completion interrupt (CMPLF) : get all of the remaining data from the FIFO, write 1 to the CMPLF field of the INTSTAT1 Register to clear the completion status and go to Step 7.

Step 7 : Disable all interrupts and check the DATCNT field of the DATCNT Register to know if all data are successfully received

Slave Transaction Mode

Step 1 : Set the address SLVADRO Register to the slave controller's I2C-bus address

Step 2 : Set the setup register (I2CSETUP0 ~ I2CSETUP3)

Set Master = 0, I2CEN = 1, and related timing parameters.

Step 3 : Enable the address hit interrupt and completion interrupt in the interrupt enable register

Set ADRHIT = 1 in INTENO Register.

Set CMPL = 1 in INTEN1 Register.

Step 4 : Wait for ADRHIT interrupt

1. Receiver : enable FIFOFUL interrupt and go to Step 5.

Set FIFOFUL = 1 in INTENO Register.

2. Transmitter : enable FIFOEMP interrupt and go to Step 6.

Set FIFOEMP = 1 in INTENO Register.

Step 5 : Receiver

1. Wait for FIFO full interrupt (FIFOFULF) until the completion interrupt (CMPLF) asserted.

2. If the FIFO full interrupt (FIFOFULF) asserts : get data from the FIFO by reading the I2CDAT Register until the FIFO becomes empty, then go to (1.)

Step 6 : Transmitter

1. Wait for the FIFO empty (FIFOEMPF) until the completion interrupt (CMPLF) asserted.

2. If the FIFO empty (FIFOEMPF) asserts : push data to the FIFO by writing data to the I2CDAT Register until the FIFO becomes full, then go to (1.)

Step 7 : Whether Step 5 or Step 6, if the completion interrupt (CMPLF) asserts, clear the FIFO and go to Step 8.

Step 8 : Check the DATCNT of the DATCNT Register to know how many data are transferred. Clear the completion interrupt flag (CMPLF) of the INTSTAT1 Register when the software is ready to receive the next transaction

6.14 UART Controller (UART)

6.14.1 Overview

Features of UART Controller

- Over-sampling frequency is programmable (even multiples ranging from 8x to 32x)
- Programmable sequence compatible with the 16C550D UART
 - Support 5 to 8 bits per character
 - Support 1, 1.5, 2 STOP bits
 - Support even, odd and stick parity bits
 - Support programmable baud rate
 - Support modem control interface
 - Support complete status reporting capabilities
 - Support line breaks, parity errors, framing errors, and data overrun detection
- 16-byte hardware transmit / receive FIFOs

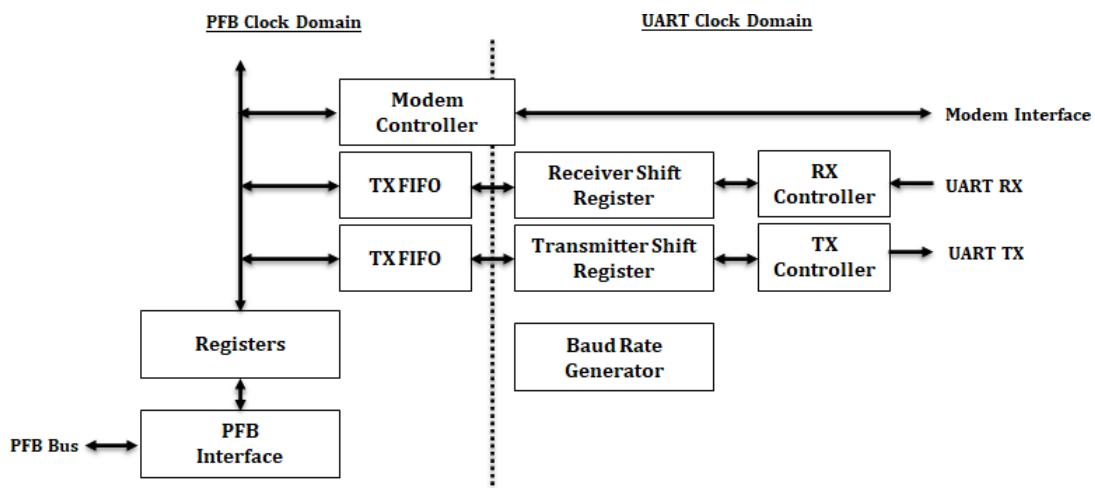


Figure 6.14-1 UART Block Diagram

The UART controller is a serial communication controller which provides asynchronous serial interface for a peripheral device or a modem. The controller comprises a transmitter, a receiver, a Baud Rate Generator, a Modem Controller, a Register File and an PFB interface, as shown in Figure 6.14-1.

Transmitter Mode

The transmitter comprises a transmitter FIFO (TX FIFO), a transmitter shift register (TSR), and a transmitter controller (TX controller). The TX FIFO holds data to be transferred through the serial interface. The TX FIFO can store up to 16 characters depending on hardware configurations. The TSR reads a character from the TX FIFO for the next transmission. The TSR functions as a parallel-to-serial

data converter, converting the outgoing character to serial bit streams. For each character transmission, the TX Controller generates a START bit, an optional parity bit, and some number of STOP bits. The generation of parity bit and STOP bit can be programmed by the line control register. The TX FIFO is by default a one entry buffer called transmitter holding register (THR). It needs to be enabled to work in multi-entry FIFO mode (FIFOE in the FIFO control register).

Receiver Mode

The receiver comprises a receiver FIFO (RX FIFO), receiver shift register (RSR), and a receiver controller (RX controller). The RX controller uses the oversampling clock generated by baud rate generator to perform sampling at the center of each bit transmission. The received bits are shifted into the RSR for serial-to-parallel data conversion and the received character is stored into the RX FIFO. The RX FIFO is by default a one entry buffer called the receiver buffer register (RBR). It needs to be enabled to work in multi-entry FIFO mode (FIFOE in the FIFO control register) with up to 16 characters depending on hardware configurations. The RX controller also detects some error conditions for each data transmission including parity error, framing error, data overrun, or line break.

Baud Rate Generator

The baud rate generator takes the UART clock as the source clock and divides it by a divisor. The divisor value is 16-bit in size and stored in two separate programming registers, each holding an 8-bit value. The most significant byte (MSB) is held in the divisor latch MSB (DLM) register and the least significant byte (LSB) is held in the divisor latch LSB (DLL) register.

The ratio of the sampling clock frequency to the baud rate is the oversampling ratio, which is stored in the over sample rate control register. The default value for OSCR is 16. This is typically good enough and do not need further adjustment. The formula for the divisor value is as follows :

The divisor value = frequency of UART / (desired baud rate × OSCR)

The oversampling clock is used by the RX controller to detect the leading edge of the START bit and to sample the data at the center of each bit transfer. Assume that the oversampling ratio is 16. The RX controller uses the oversampling clock to operate a counter, which starts counting from 1 to 16 after a falling edge of SIN (beginning of a START bit) is detected. The RX controller samples the value of SIN as a data bit when the counter value is 8. The counter will be reset to 1 after its value reaches 16 for sampling the next bit. The process repeats until the STOP bit is received. The oversampling clock is also used by the TX controller to generate its output data stream.

The oversampling technique provides better tolerance of clock variation. Suppose that :

- T is the period of one bit transmission as perceived by the UART Rx controller

- $T_{transmitter}$ is the period of one bit transmission of the transmitter
- N is the bit number for one frame of data – the START bit, data bits, parity bit (if any), and the STOP bit(s)

Then, the clock period tolerance for $T_{transmitter}$ is as follows :

$$\left(1 - \frac{\left(0.5 - \frac{1}{OSCR}\right)}{N}\right) \times T \leq T_{transmitter} \leq (N - 0.5)/(N - 1) \times T$$

Since T is the inverse of the baud rate, the actual baud rate generated by this controller in relation to the actual baud rate of the transmitter (the tolerance factor) can be within the range below :

$$\left(1 - \frac{\left(0.5 - \frac{1}{OSCR}\right)}{N}\right) \leq \frac{\text{Actual Baud Rate}}{\text{Actual Transmitter Baud Rate}} \leq (N - 0.5)/(N - 1)$$

If the character has one START bit, 8 data bits, one parity bit and one STOP bit, then N is 11 (1 + 8 + 1 + 1). The tolerance factor is from 0.9602 to 1.05. The table below shows clock tolerance factors as percentage of the actual transmitter baud rates for typical values of N and OSCR.

OSCR	N = 9	N = 10	N = 11	N = 12
8	95.83% - 106.25%	96.25% - 105.56%	96.59% - 105.00%	96.88% - 104.55%
16	95.14% - 106.25%	95.63% - 105.56%	96.02% - 105.00%	96.35% - 104.55%
32	94.79% - 106.25%	95.31% - 105.56%	95.74% - 105.00%	96.09% - 104.55%

Modem Controller

The modem controller provides the modem control function. Furthermore, an auto flow control function is provided to reduce the software management effort.

The flow control of UART can be achieved by the RTS/CTS handshaking. Without the flow control, overrun errors may occur when the data transmission rate exceeds the data consumption rate. The flow control guarantees that the data transmission will not proceed unless the receiver has enough space to accept the data.

The auto flow control function of UART controller comprises auto-RTS and auto-CTS. The former is for the incoming data while the latter is for the outgoing data.

With auto-RTS, the RTS output of the controller should be connected to the CTS input of the other end of the UART connection.

- n is the depth of the FIFO
- When the receiver FIFO $\geq n - 1$, the RTS is de-asserted
- When the receiver FIFO $< n - 1$, the RTS is automatically asserted to request the other end of the UART connection to send more data

With auto-CTS, the CTS input of the controller is connected to the RTS output of the other end of the UART connection. The UART controller waits for the assertion of CTS before sending the next character. To stop the controller from transmitting the next character, CTS must be de-asserted before the STOP bit of the current character.

Loopback Mode

The UART controller provides a loopback mode for diagnostic testing without connecting an external device. When the loopback mode is enabled, the behavior of the controller is as follows :

- The output signals are disconnected from the TX controller and driven HIGH to avoid confusing the other end of the serial connection in case the connection exists
- The input signals are disconnected from the RX controller and ignored
- The TX controller output values originally intended for the TX output signals is routed internally to replace the input signal of RX for the RX controller, so every bit sent by the TX controller is looped back and received by the RX controller
- The modem controller output values which are intended for the signals are routed internally to replace the input signals for the modem controller

The value written to the transmitter holding register will be internally received by the receiver buffer register and the value written to the modem control register (bit3~bit0) will be routed to the modem status register (bit7~bit4). The entire bit transmission path is exercised in the loopback mode, only the input/output port is isolated from the diagnostic activity. The relationship between the bit fields in the modem control register and those in the modem status register are illustrated in Figure 6.14-2.

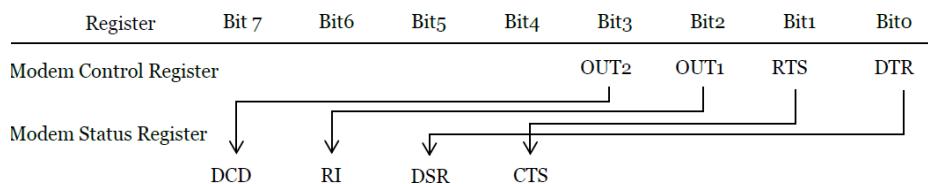


Figure 6.14-2 Relationship Between MCR and MSR in Loopback Mode

6.14.2 Register Map and Description

Base Address (UART_BA) : 0xF000				
Register	Offset	RW	Description	Reset Value
HWCFG	UART_BA+0x00	R/W	UART Hardware FIFO Configuration Register	0x00
OSCRCTRL	UART_BA+0x01	R/W	UART Over-Sampling Rate Control Register	0x00
DAT_DLL	UART_BA+0x02	R	DLAB = 0 : Receive Buffer Register (RBR)	0x00
		W	DLAB = 0 : Transmitter Holding Register (THR)	
		R/W	DLAB = 1 : UART Divisor Latch LSB Register	
IER_DLM	UART_BA+0x03	R/W	DLAB = 0 : UART Interrupt Enable Register	0x00
		R/W	DLAB = 1 : UART Divisor Latch MSB Register	
IIR_FCR	UART_BA+0x04	R	UART Interrupt Identification Register	0x00
		W	UART FIFO Control Register	
LINECTRL	UART_BA+0x05	R/W	UART Line Control Register	0x00
MODEMCTRL	UART_BA+0x06	R/W	UART Modem Control Register	0x00
LINESTAT	UART_BA+0x07	R/W	UART Line Status Register	0x00
MODEMSTAT	UART_BA+0x08	R/W	UART Modem Status Register	0x00

UART Hardware FIFO Configuration Register

Register	Offset	RW	Description	Reset Value
HWCFG	UART_BA+0x00	R/W	UART Hardware FIFO Configuration Register	0x00

Bits	Flag	Description
[7:2]	Reserved	Reserved.
[1:0]	FIFOSIZE	FIFO FIFOSIZE = 0, FIFO size is 16-byte. Size

UART Over-Sampling Rate Control Register

Register	Offset	RW	Description	Reset Value
OSCRCtrl	UART_BA+0x01	R/W	UART Over-Sampling Rate Control Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4:0]	OSCR	UART Over-Sampling Rate Control Register This bit is set by software, cleared by software. The value must be an even number; any odd value writes to this field will be converted to an even value. OSCR = 0: The over-sample ratio is 32. OSCR ≤ 8: The over-sample ratio is 8. 8 < OSCR < 3: The over sample ratio is OSCR.

UART Data or Divisor Latch LSB Register

Register	Offset	RW	Description	Reset Value
DAT_DLL	UART_BA+0x02	R	DLAB = 0 : Receive Buffer Register (RBR)	0x00
		W	DLAB = 0 : Transmitter Holding Register (THR)	
		R/W	DLAB = 1 : UART Divisor Latch LSB Register	

Bits	Flag	Description
[7:0]	RBR (Read Only : RX)	DLAB = 0 (DLAB bit field in LINCTRL Register) UART Receive Buffer Register UART receive data read port.

The RBR has two modes, the FIFO mode and the Buffer mode. Bit0 of the FIFO control register (FIFOE) controls the selection between these two modes. When FIFOE is 1 (FIFO mode), the RBR is a RXFIFO. The depth of RXFIFO is 16 characters. When FIFOE is 0 (Buffer mode), the RBR is just a byte buffer.

Bits	Flag	Description
[7:0]	THR (Write Only : TX)	DLAB = 0 (DLAB bit field in LINCTRL Register) UART Transmitter Holding Register UART transmit data write port.

The THR has two modes, the FIFO mode and the Buffer mode. Bit0 of the FIFO control register (FIFOE) controls the selection between these two modes. When FIFOE is 1 (FIFO mode), the THR is a TXFIFO. The depth of TXFIFO is 16 characters. When FIFOE is 0 (Buffer mode), the THR is a byte buffer.

Bits	Flag	Description
[7:0]	DLL	DLAB = 1 (DLAB bit field in LINCTRL Register) UART Least Significant Byte of Divisor Latch Register UART divisor latch LSB byte.

The divisor latch holds the divisor value for generating the sampling clock from the UART clock source. The size of the divisor latch is 16 bits (two bytes) and this register holds the least significant byte of the divisor latch. The valid value of the divisor latch should be between 1 and 65535 ($2^{16}-1$), inclusive.

UART Interrupt Enable or Divisor Latch MSB Register

UART Interrupt Enable or Divisor Latch MSB Register

Register	Offset	RW	Description	Reset Value
IER_DLM	UART_BA+0x03	R/W	DLAB = 0 : UART Interrupt Enable Register	0x00
		R/W	DLAB = 1 : UART Divisor Latch MSB Register	

Bits	Flag	Description
[7:4]	Reserved	Reserved.
[3]	EMSI	DLAB = 0 (DLAB bit field in LINCTRL Register) UART Modem Status Interrupt Enable Flag This bit is set by software, cleared by software. The interrupt asserts when the status of one of the following occurs : If the auto-cts mode is disabled (MCR bit4 (AFE) = 0), the status of modem_ctsn has been changed. If the auto-cts mode is enabled (MCR bit4 (AFE) = 1), modem_ctsn would be used to control the transmitter. EMSI = 0, Modem status interrupt disabled. EMSI = 1, Modem status interrupt enabled.
[2]	ELSI	DLAB = 0 (DLAB bit field in LINCTRL Register) UART Receiver Line Status Interrupt Enable Flag This bit is set by software, cleared by software. ELSI = 0, Receiver line status interrupt disabled. ELSI = 1, Receiver line status interrupt enabled.
[1]	ETHEI	DLAB = 0 (DLAB bit field in LINCTRL Register) UART Transmitter Holding Register Enable Flag This bit is set by software, cleared by software. ETHEI = 0, Transmitter holding register interrupt disabled. ETHEI = 1, Transmitter holding register interrupt enabled.
[0]	ERBI	DLAB = 0 (DLAB bit field in LINCTRL Register) UART Receive Data Interrupt Enable Flag This bit is set by software, cleared by software. ERBI = 0, Receive data interrupt disabled. ERBI = 1, Receive data interrupt enabled.

Bits	Flag	Description
[7:0]	DLM	DLAB = 1 (DLAB bit field in LINCTRL Register) UART Most Significant Byte of Divisor Latch Register UART divisor latch MSB byte.

The divisor latch holds the divisor value for generating the sampling clock from the UART clock source. The size of the divisor latch is 16 bits (two bytes) and this register holds the most significant byte of the divisor latch. The valid value of the divisor latch should be between 1 and 65535 ($2^{16}-1$), inclusive.

UART Interrupt Identification or FIFO Control Register

Register	Offset	RW	Description	Reset Value
IIR_FCR	UART_BA+0x04	R	UART Interrupt Identification Register	0x00
		W	UART FIFO Control Register	

Bits	Flag	Description
[7:6]	FIFOED	<p>While Read IIR_FCR UART FIFO Enabled Flag This bit is read only. FIFOED = 0, UART FIFO is disabled. FIFOED = 3, UART FIFO is enabled (These two bits are 1 when bit 0 of the FIFO control register (FIFOE) is set to 1).</p>
[5:4]	Reserved	Reserved.
[3:0]	INTRID	<p>While Read IIR_FCR UART Interrupt ID Flag This bit is read only. INTRID = 0110, Receiver line status. <ul style="list-style-type: none"> Overrun errors, parity errors, framing errors, or line breaks Read the line status register (LSR) to clear the interrupt INTRID = 0100, Receive data available. <ul style="list-style-type: none"> If FIFOE is disabled, there is one received data available in the DAT. If FIFOE is enabled, the numbers of received data available reach the trigger level (RFIFOT). The interrupt signal will stay active until the number of data available becoming smaller than the trigger level. Read the receiver data register (RBR) to clear the interrupt INTRID = 1100, Character timeout. <ul style="list-style-type: none"> When FIFOE is enabled, and no character have been removed from or input to receive FIFO and there is at least one character in receive FIFO during the last four characters times. Read the receiver data register (RBR) to clear the interrupt INTRID = 0010, Transmitter holding register empty. <ul style="list-style-type: none"> If FIFOE is disabled, the 1-byte THR is empty. If FIFOE is enabled, the whole 16-byte transmit FIFO is empty. Write the transmitter holding register (THR) or read the interrupt identification register (IIR) to clear INTRID = 0000, Modem status. <ul style="list-style-type: none"> The Modem Status Register (MSR) bit[3:0] is not 0. One of the following events occurred: Clear To Send (CTS), Data Set Ready (DSR), Ring Indicator (RI), or Data Carrier Detect (DCD) Read the modem status register (MSR) to clear INTRID flag.</p>

Note: When multiple events would trigger interrupts at the same time, the priority level determines the value for the INTRID field.

Bits	Flag	Description
[7:6]	RFIFOT	<p>While Write IIR_FCR UART Receiver FIFO Trigger Level Flag This bit is write only, and cleared by software. RFIFOT = 0, Not empty. RFIFOT = 1, More than 3. RFIFOT = 2, More than 7. RFIFOT = 3, More than 13.</p>
[5:4]	TFIFOT	<p>While Write IIR_FCR UART Transmitter FIFO Trigger Level Flag This bit is write only, and cleared by software. TFIFOT = 0, Not full. TFIFOT = 1, Less than 12. TFIFOT = 2, Less than 8. TFIFOT = 3, Less than 4.</p>
[3]	Reserved	Reserved.
[2]	TFIFORST	<p>While Write IIR_FCR UART Transmitter FIFO Reset Enable Flag This bit is write only, and cleared by hardware. TFIFORST = 0, UART transmitter FIFO not reset. TFIFORST = 1, UART transmitter FIFO reset.</p>
[1]	RFIFORST	<p>While Write IIR_FCR UART Receiver FIFO Reset Enable Flag This bit is write only, and cleared by hardware. RFIFORST = 0, UART receiver FIFO not reset. RFIFORST = 1, UART receiver FIFO reset.</p>
[0]	FIFOE	<p>While Write IIR_FCR UART FIFO Enable Flag This bit is write only, and cleared by software. FIFOE = 0, UART FIFO disabled. FIFOE = 1, UART FIFO enabled.</p>

UART Line Control Register

Register	Offset	RW	Description	Reset Value
LINECTRL	UART_BA+0x05	R/W	UART Line Control Register	0x00

Bits	Flag	Description
[7]	DLAB	UART Divisor Latch Access Flag This bit is set by software, cleared by software. DLAB = 0, Norma register is selected. DLAB = 1, Divisor latch register is selected.
[6]	BC	UART Break Control Flag This bit is set by software, cleared by software. BC = 0, Break control disabled. BC = 1, Break control enabled.
[5]	SPS	UART Stick Parity Selection Flag This bit is set by software, cleared by software. SPS = 0, Stick parity disabled. SPS = 1, Stick parity enabled.
[4]	EPS	UART Even Parity Selection Flag This bit is set by software, cleared by software. EPS = 0, Odd parity. EPS = 1, Even parity.
[3]	PEN	UART Parity Bit Enable Flag This bit is set by software, cleared by software. PEN SPS EPS 0 x x -> No Parity Bit 1 0 0 -> Odd Parity 1 0 1 -> Even Parity 1 1 0 -> Parity = 1 1 1 1 -> Parity = 0 PEN = 0, Parity bit disabled. PEN = 1, Parity bit enabled.
[2]	STB	UART Number of Stop Bit Flag This bit is set by software, cleared by software. STB = 0, 1-bit stop. STB = 1, WLS = 0 -> 1.5-bit stop. STB = 1, WLS = 1, 2, 3 -> 2-bit stop.
[1:0]	WLS	UART Word Length Setting Flag This bit is set by software, cleared by software. WLS = 0, 5-bit. WLS = 1, 6-bit. WLS = 2, 7-bit. WLS = 3, 8-bit.

UART Modem Control Register

Register	Offset	RW	Description	Reset Value
MODEMCTRL	UART_BA+0x06	R/W	UART Modem Control Register	0x00

Bits	Flag	Description
[7:6]	Reserved	Reserved.
[5]	AFCE	UART Auto Flow Control Enable Flag This bit is set by software, cleared by software. AFCE = 0, Auto flow control disabled. AFCE = 1, Auto flow control enabled.
[4]	LOOP	UART Loopback Mode Enable Flag This bit is set by software, cleared by software. LOOP = 0, Loopback mode disabled. LOOP = 1, Loopback mode enabled.
[3:2]	Reserved	Reserved.
[1]	RTS	UART Modem Request to Send Flag This bit is set by software, cleared by software. This bit controls the modrm_rtsn output. RTS = 0, Modem_rtsn output signal will be driven HIGH. RTS = 1, Modem_rtsn output signal will be driven LOW.
[0]	Reserved	Reserved.

UART Line Status Register

Register	Offset	RW	Description	Reset Value
LINESTAT	UART_BA+0x07	R/W	UART Line Status Register	0x00

Bits	Flag	Description
[7]	ERRF	UART Error in RXFIFO Flag This bit is set by hardware, and cleared when this register is read. In the FIFO mode, this bit is set when there is at least one parity error, framing error, or line break associated with data in the RXFIFO. ERRF = 0, Otherwise. ERRF = 1, At least one error in the RXFIFO.
[6]	TEMT	UART Transmitter Empty Flag This bit is set by hardware. TEMT = 0, Otherwise. TEMT = 1, THR (TXFIFO in the FIFO mode) and the transmitter shift register (TSR) are both empty.
[5]	THER	UART Transmitter Holding Register Empty Flag This bit is set by hardware. If the THRE interrupt is enabled, an interrupt is triggered when THRE becomes 1. THER = 0, Otherwise. THER = 1, THR (TXFIFO in the FIFO mode) is empty.
[4]	LBREAK	UART Line Break Flag This bit is set when the RX input signal was held LOW for longer than the time for a full-word transmission. A full-word transmission is the transmission of the START, data, parity, and STOP bits. It is cleared when this register is read. In the FIFO mode, this bit indicates the line break for the received data at the top of the RXFIFO. LBREAK = 0, Otherwise. LBREAK = 1, Line break.
[3]	FERR	UART Frame Error Flag This bit is set by hardware, and cleared when this register is read. This bit is set when the received STOP bit is not HIGH. In the FIFO mode, this bit indicates the framing error for the received data at the top of the RXFIFO. PERR = 0, Otherwise. PERR = 1, Frame error.
[2]	PERR	UART Parity Error Flag This bit is set by hardware, and cleared when this register is read. In the FIFO mode, this bit indicates the parity error for the received data at the top of the RXFIFO. PERR = 0, Otherwise. PERR = 1, Received parity is not matched.
[1]	OERR	UART Overrun Error Flag This bit is set by hardware. OERR = 0, Otherwise. OERR = 1, Data in the receiver data register is overrun.
[0]	DR	UART Data Ready Flag This bit is set by hardware, and cleared when all of the received data are read. This bit is set when there are incoming received data in the DAT register. DR = 0, Otherwise. DR = 1, Data in the receiver data register.

UART Modem Status Register

Register	Offset	RW	Description	Reset Value
MODEMSTAT	UART_BA+0x08	R/W	UART Modem Status Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4]	CTS	UART Clear to Send Flag This bit is set by hardware, and cleared when this register is read. CTS = 0, modem_ctsn input signal is HIGH. CTS = 1, modem_ctsn input signal is LOW.
[3:1]	Reserved	Reserved.
[0]	DCTS	UART Modem Delta Clear to Send Flag This bit is set by hardware, and cleared when this register is read This bit is set when the state of the modem_ctsn input signal has been changed since the last time this register is read. DCTS = 0, Otherwise. DCTS = 1, mode_ctsn has been changed.

6.14.3 Programming Model (Please refer to “Sample code project”)

UART Transmitter

Step 1 :

Set FIFOE in the FIFO control register (FCR) to enable the FIFO.

Step 2 :

Wait for FIFO empty by looping until the THRE bit in the line status register (LINESTAT) becomes 1.

Step 3 :

Write at most 16 bytes of data to THR.

Step 4 :

If there are more data to send, go to Step 2.

UART Receiver

Step 1 :

Set FIFOE in the FIFO control register (FCR) to enable the FIFO.

Step 2 :

Wait until the DR bit in the line status register (LINESTAT) becomes 1.

Step 3 :

Read one byte of data from the RBR.

Step 4 :

Go to Step 2 to read more data.

6.15 Serial Peripheral Interface Controller (SPI)

6.15.1 Overview

The FE81 series supports a Serial Peripheral Interface (SPI) controller which serves as a SPI master or a SPI slave. As a SPI master, the controller connects various SPI devices. As a SPI slave, the controller responds to the master requests for data exchange. Figure 6.15-1 depicts the SPI block diagram.

Features of SPI Controller

- Support MSB or LSB first transfer
- Support programmable SPI SCLK
- Support programmable master or slave mode
 - Master maximum@6MHz with PFB clock 12MHz
 - Slave maximum@3MHz with PFB clock 12MHz
- Support 8- or 16- or 24-bit address bus
- 8-byte hardware transmit or receive FIFO

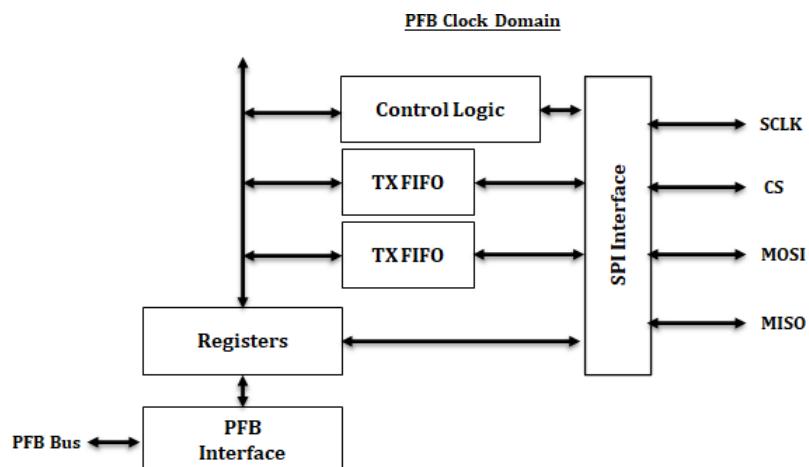


Figure 6.15-1 SPI Controller Block Diagram

Master Mode

The SPI controller can act as a SPI master, initiating SPI transfers on the SPI bus. The SPI transfer format and interface timing are programmable via the PFB programming port. The SPI transfers are initiated through direct register programming.

Figure 6.15-2 shows an example of SPI transfer format which includes command, address, and data phases for TX/RX data transfer. The controller provides dedicated registers to specify the contents of command, address, and data fields. The data register is shared by both TX and RX data transfers. The SPI controller provides TX/RX FIFO threshold interrupts to ease flow control under the PIO

programming. The controller also has a programmable bit to issue an interrupt once the transfer completes.

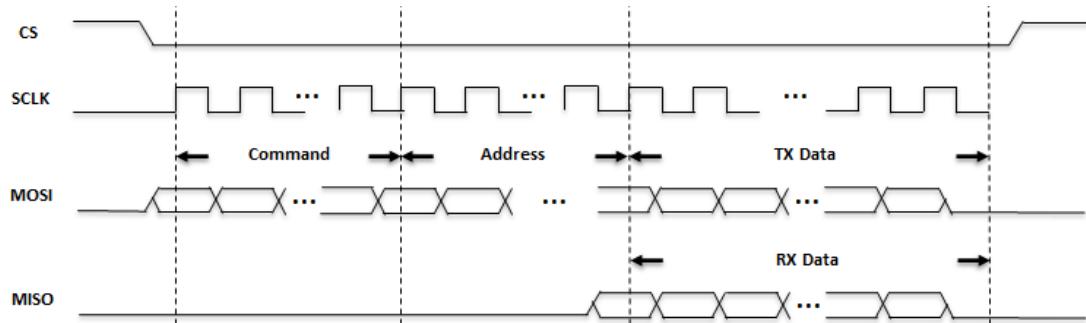


Figure 6.15-2 Transfer Format

Slave Mode

The SPI slave interprets the packet on the SPI I/O interface as three fields: slave command, slave dummy and slave data. The slave command field and slave dummy field are always 8-bit in length. The slave data field format is defined by the transfer control register (TRNMODE field in TRANSCTRL3 Register). Figure 6.15-3, Figure 6.15-4, Figure 6.15-5, and Figure 6.15-6 depict the timing diagram of read status command, read or write data command and user-defined command.

Slave Command Name	OP Code	Slave Data
Read Status IO	0x05	Reply 32-bit slave status registers (SLVSTAT2 ~ SLVSTAT0)
Read Data IO	0x0B	Reply data from the data register in the FIFO manner
Write Data IO	0x51	Data saved to the data register in the FIFO manner
User-defined	Any 8-bit numbers except the listed OP codes above	Depending on the transfer control register

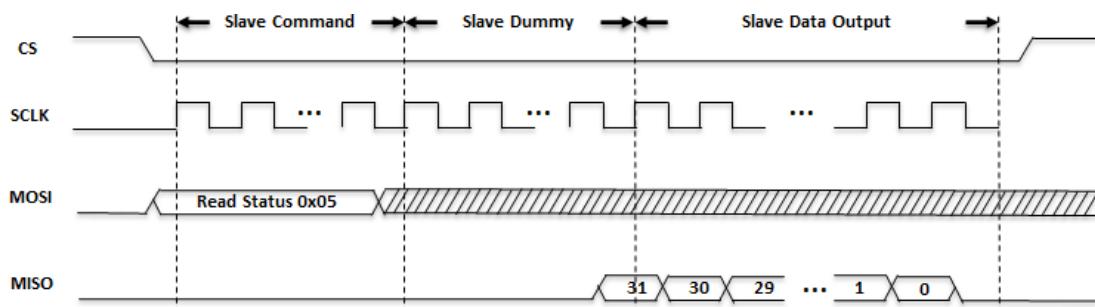


Figure 6.15-3 Timing Diagram of Read Slave Status Command

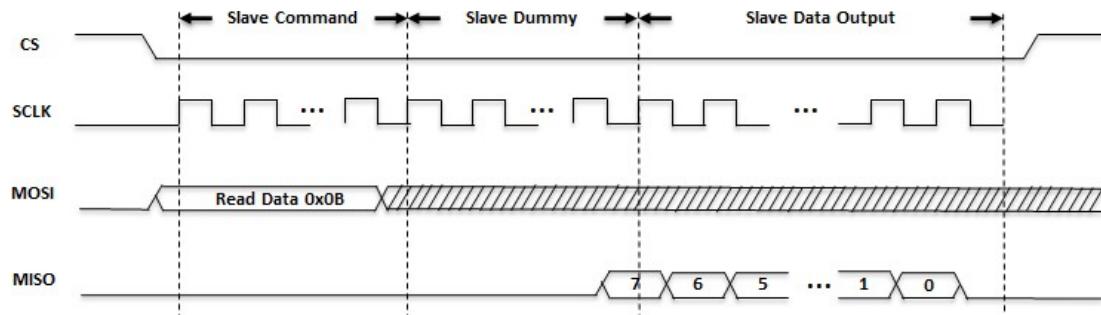


Figure 6.15-4 Timing Diagram of Data-Reading Command

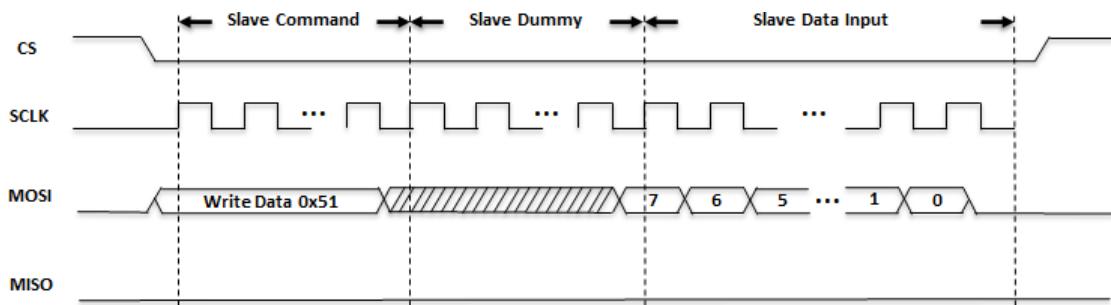


Figure 6.15-5 Timing Diagram of Data-Writing Command

For the user-defined command, the “slave data field” format is defined by the transfer control register (TRNMODE field in TRANSCTRL3 Register). For example, if the transfer mode is {Read Only}, only the data read field will be logged into the data register.

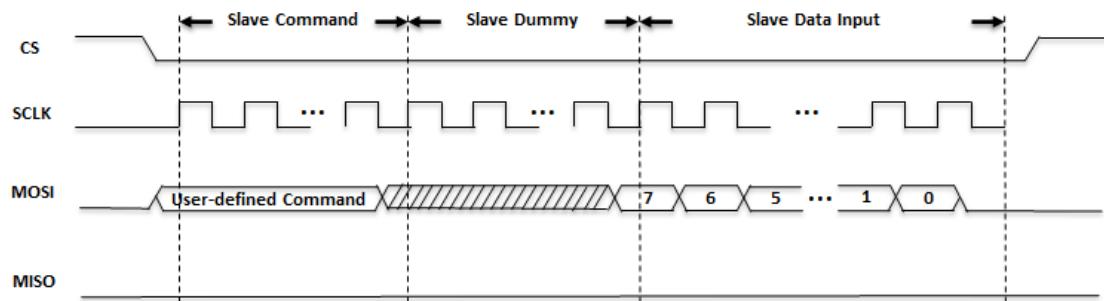


Figure 6.15-6 Timing Diagram of User-defined Command

Note that the user define command provides flexibility for customer to transceiver the data field as compared with read or write data command. Please see section 6.15.2 TRANSCTRL3 Register for more details.

6.15.2 Register Map and Description

Base Address (SPI_BA) : 0xFC00				
Register	Offset	RW	Description	Reset Value
TRNFMTO	SPI_BA+0x00	R/W	SPI Transfer Format 0 Register	0x00
TRNFM1	SPI_BA+0x01	R/W	SPI Transfer Format 1 Register	0x00
TRNCTRL0	SPI_BA+0x02	R/W	SPI Transfer Control 0 Register	0x00
TRNCTRL1	SPI_BA+0x03	R/W	SPI Transfer Control 1 Register	0x00
TRNCTRL2	SPI_BA+0x04	R/W	SPI Transfer Control 2 Register	0x00
TRNCTRL3	SPI_BA+0x05	R/W	SPI Transfer Control 3 Register	0x00
SPICMD	SPI_BA+0x06	R/W	SPI Command Register	0x00
SPIADRO	SPI_BA+0x07	R/W	SPI Address 0 Register	0x00
SPIADR1	SPI_BA+0x08	R/W	SPI Address 1 Register	0x00
SPIADR2	SPI_BA+0x09	R/W	SPI Address 2 Register	0x00
SPIDATA	SPI_BA+0x0A	R/W	SPI Data Register	0x00
SPICTRL0	SPI_BA+0x0B	R/W	SPI Control 0 Register	0x00
SPICTRL1	SPI_BA+0x0C	R/W	SPI Control 1 Register	0x00
SPICTRL2	SPI_BA+0x0D	R/W	SPI Control 2 Register	0x00
SPISTATO	SPI_BA+0x0E	R/W	SPI Status 0 Register	0x00
SPISTAT1	SPI_BA+0x0F	R/W	SPI Status 1 Register	0x00
SPISTAT2	SPI_BA+0x10	R/W	SPI Status 2 Register	0x00
INTEN	SPI_BA+0x11	R/W	SPI Interrupt Enable Register	0x00
INTSTAT	SPI_BA+0x12	R/W	SPI Interrupt Status Register	0x00
INTFTIMO	SPI_BA+0x13	R/W	SPI Interface Timing 0 Register	0x00
INTFTIM1	SPI_BA+0x14	R/W	SPI Interface Timing 1 Register	0x00
SLVSTAT0	SPI_BA+0x15	R/W	SPI Slave Status 0 Register	0x00
SLVSTAT1	SPI_BA+0x16	R/W	SPI Slave Status 1 Register	0x00
SLVSTAT2	SPI_BA+0x17	R/W	SPI Slave Status 2 Register	0x00
RCVCNT0	SPI_BA+0x18	R/W	SPI Slave Receive Counter 0 Register	0x00
RCVCNT1	SPI_BA+0x19	R/W	SPI Slave Receive Counter 1 Register	0x00
TSMCNT0	SPI_BA+0x1A	R/W	SPI Transmit Counter 0 Register	0x00
TSMCNT1	SPI_BA+0x1B	R/W	SPI Transmit Counter 1 Register	0x00
SPICFG	SPI_BA+0x1C	R/	SPI Configuration Register	0x00

SPI Transfer Format 0 Register

Register	Offset	RW	Description	Reset Value
TRNFMTO	SPI_BA+0x00	R/W	SPI Transfer Format 0 Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4]	MOSIBID	SPI Bi-directional MOSI in Regular Mode Selection Flag This bit is set by software, cleared by software. MOSIBID = 0, MOSI is uni-directional signal in regular (single) mode. MOSIBID = 1, MOSI is bi-directional signal in regular (single) mode.
[3]	LSB	SPI LSB/MSB Bit First Selection Flag This bit is set by software, cleared by software. LSB = 0, Most significant bit first. LSB = 1, Least significant bit first.
[2]	SLVMODE	SPI Master/Slave Mode Selection Flag This bit is set by software, cleared by software. SLVMODE = 0, Master mode. SLVMODE = 1, Slave mode.
[1]	CPOL	SPI Clock Polarity Phase Flag This bit is set by software, cleared by software. CPOL = 0, SCLK is LOW in the idle states. CPOL = 1, SCLK is HIGH in the idle states.
[0]	CPHA	SPI Clock Sampling Phase Flag This bit is set by software, cleared by software. CPHA = 0, Sampling data at pos-edge SCLK. CPHA = 1, Sampling data at neg-edge SCLK.

SPI Transfer Format 1 Register

Register	Offset	RW	Description	Reset Value
TRNFMT1	SPI_BA+0x01	R/W	SPI Transfer Format 1 Register	0x00

Bits	Flag	Description				
[7:6]	ADRLEN	SPI	Address	Length	Selection	Flag
		This bit is set by software, cleared by software.				
		ADRLEN = 0, 1-byte address.				
		ADRLEN = 1, 2-byte address.				
		ADRLEN = 2, 3-byte address.				
		ADRLEN = 3, Reserved.				
[5]	Reserved	Reserved.				
[4:0]	DATLEN	SPI	Data	Length	Selection	Flag
		This bit is set by software, cleared by software.				
		The actual bit number of a data unit is (DATLEN + 1) : Bit length of data				

SPI Transfer Control 0 Register

Register	Offset	RW	Description	Reset Value
TRNCTRL0	SPI_BA+0x02	R/W	SPI Transfer Control 0 Register	0x00

Bits	Flag	Description
[7:0]	RTRNCNT	<p>SPI Transfer Count for Read Data</p> <p>This bit is set by software, cleared by software.</p> <p>RTRNCNT indicates the number of units of data to be received from SPI bus and stored to the Date Register. The actual received count is (RTRNCNT+1).</p> <p>RTRNCNT only takes effect when TRNMODE is 0, 2, 3, or 4.</p> <p>The size (bit-width) of a data unit is defined by the DATLEN field of the transfer format register (TRANFMT1).</p> <p>For TRNMODE 0, WTRNCNT must be equal to RTRNCNT.</p>

SPI Transfer Control 235 Register

Register	Offset	RW	Description	Reset Value
TRNCTRL1	SPI_BA+0x03	R/W	SPI Transfer Control 1 Register	0x00

Bits	Flag	Description
[7:4]	WTRNCNT	SPI Transfer Count for Write Data This bit is set by software, cleared by software. WTRNCNT indicates the number of units of data to be transmitted to the SPI bus from the Data Register. The actual transfer count is (WrTranCnt+1). WTRNCNT only takes effect when TRNMODE is 0, 1, 3, or 4. The size (bit-width) of a data unit is defined by the DATLEN field of the Transfer Format Register. For TRNMODE 0, WTRNCNT must be equal to RTRNCNT.
[3]	TOKENVU	SPI Special Token Value Following the Address Phase (Master Mode Only) This bit is set by software, cleared by software. TOKENVU = 0, Token value = 0x00. TOKENVU = 1, Token value = 0x69.
[2:1]	Reserved	Reserved.
[0]	RTRNCNT	SPI Transfer Count for Read Data This bit is set by software, cleared by software. RTRNCNT indicates the number of units of data to be received from SPI bus and stored to the Date Register. The actual received count is (RTRNCNT+1). RTRNCNT only takes effect when TRNMODE is 0, 2, 3, or 4. The size (bit-width) of a data unit is defined by the DATLEN field of the transfer format register (TRANFMT1). For TRNMODE 0, WTRNCNT must be equal to RTRNCNT.

SPI Transfer Control 236 Register

Register	Offset	RW	Description	Reset Value
TRNCTRL2	SPI_BA+0x04	R/W	SPI Transfer Control 2 Register	0x00

Bits	Flag	Description
[7:6]	Reserved	Reserved.
[5]	TOKENEN	SPI Special Token Value Enable Flag (Master Mode Only) This bit is set by software, cleared by software. TOKENEN = 0, One-byte special token disabled. TOKENEN = 1, One-byte special token enabled.
[4:0]	WTRNCNT	SPI Transfer Count for Write Data This bit is set by software, cleared by software. WTRNCNT indicates the number of units of data to be transmitted to the SPI bus from the Data Register. The actual transfer count is (WrTranCnt+1). WTRNCNT only takes effect when TRNMODE is 0, 1, 3, or 4. The size (bit-width) of a data unit is defined by the DATLEN field of the Transfer Format Register. For TRNMODE 0, WTRNCNT must be equal to RTRNCNT.

SPI Transfer Control 237 Register

Register	Offset	RW	Description	Reset Value
TRNCTRL3	SPI_BA+0x05	R/W	SPI Transfer Control 3 Register	0x00

Bits	Flag	Description
[7]	Reserved	Reserved.
[6]	CMDEN	SPI Command Phase Enable Flag (Master Mode Only) This bit is set by software, cleared by software. CMDEN = 0, Command phase disabled. CMDEN = 1, Command phase enabled.
[5]	ADREN	SPI Address Phase Enable Flag (Master Mode Only) This bit is set by software, cleared by software. ADREN = 0, Address phase disabled. ADREN = 1, Address phase enabled.
[4]	Reserved	Reserved.
[3:0]	TRNMODE	SPI Transfer Mode Flag This bit is set by software, cleared by software. TRNMODE = 0, Write and read at the same time. TRNMODE = 1, Write only. TRNMODE = 2, Read only. TRNMODE = 3, Write then read. TRNMODE = 4, Read then write. TRNMODE = 5, Reserved. TRNMODE = 6, Reserved. TRNMODE = 7, None data (must enable CMDEN or ADDREN in master mode). TRNMODE > 8, Reserved.

SPI Command Register

Register	Offset	RW	Description	Reset Value
SPICMD	SPI_BA+0x06	R/W	SPI Command Register	0x00

Bits	Flag	Description		
[7:0]	CMD	SPI Command Register This bit is set by software, cleared by software. Write operations on this register trigger SPI transfers. This register must be written with a dummy value to start a SPI transfer even when the command phase is not enabled. When the SPI controller is programmed to the slave mode, the command field of the last received SPI transaction is stored in this SPI command register.		

SPI Address Register

Register	Offset	RW	Description	Reset Value
SPIADRO	SPI_BA+0x07	R/W	SPI Address 0 Register	0x00

Bits	Flag	Description
[7:0]	SPIADR _x , x = 0, 1, 2	SPI Address x Register, x = 0, 1, 2 This bit is set by software, cleared by software. SPI address.

SPI Data Register

Register	Offset	RW	Description	Reset Value
SPIDATA	SPI_BA+0x0A	R/W	SPI Data Register	0x00

Bits	Flag	Description
[7:0]	SPIDAT	<p>SPI Data Register</p> <p>This bit is set by software, cleared by software.</p> <p>For writes, data is enqueued to the TX FIFO. The least significant byte is always transmitted first.</p> <p>For reads, data is read and dequeued from the RX FIFO. The least significant byte is the first received byte.</p> <p>The FIFOs decouple the speed of the SPI transfers and the software's generation/consumption of data. When the TX FIFO is empty, SPI transfers will hold until more data is written to the TX FIFO; when the RX FIFO is full, SPI transfers will hold until there is more room in the RX FIFO.</p> <p>If more data is written to the TX FIFO than the write transfer count (WRTRANCNT), the remaining data will stay in the TX FIFO for the next transfer or until the TX FIFO is reset.</p>

SPI Control 0 Register

Register	Offset	RW	Description	Reset Value
SPICTRL0	SPI_BA+0x0B	R/W	SPI Control 0 Register	0x00

Bits	Flag	Description					
[7:3]	Reserved	Reserved.					
[2]	TFIFORST	SPI Transmit FIFO Reset This bit is set by software, cleared by software. TFIFORST = 0, Idle. TFIFORST = 1, Transmit FIFO reset.					
[1]	RFIFORST	SPI Receive FIFO Reset This bit is set by software, cleared by software. RFIFORST = 0, Idle. RFIFORST = 1, Receive FIFO reset.					
[0]	SPIRST	SPI Reset This bit is set by software, cleared by hardware. SPIRST = 0, Idle. SPIRST = 1, SPI reset.					

SPI Control 242 Register

Register	Offset	RW	Description	Reset Value
SPICTRL1	SPI_BA+0x0C	R/W	SPI Control 1 Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4:0]	RTHRCV	SPI Receive FIFO Threshold Flag This bit is set by software, cleared by software. The RXFIFOINT interrupt would be issued for consuming the RX FIFO when the RX data count is more than or equal to the RX FIFO threshold.

SPI Control 243 Register

Register	Offset	RW	Description	Reset Value
SPICTRL2	SPI_BA+0x0D	R/W	SPI Control 2 Register	0x00

Bits	Flag	Description
[7:5]	Reserved	Reserved.
[4:0]	TTHTRN	SPI Transmit FIFO Threshold Flag This bit is set by software, cleared by software. The TXFIFOINT interrupt would be issued to replenish the TX FIFO when the TX data count is less than or equal to the TX FIFO threshold.

SPI Status 0 Register

Register	Offset	RW	Description	Reset Value
SPISTAT0	SPI_BA+0x0E	R/W	SPI Status 0 Register	0x00

Bits	Flag	Description		
[7:1]	Reserved	Reserved.		
[0]	BUSY	SPI	In Progress	Flag
		This bit is set by hardware, cleared by hardware. BUSY = 0, Idle. BUSY = 1, SPI direct register programming is in progress.		

SPI Status 245 Register

Register	Offset	RW	Description	Reset Value
SPISTAT1	SPI_BA+0x0F	R/W	SPI Status 1 Register	0x00

Bits	Flag	Description				
[7]	RFUL	SPI Receive FIFO Full Flag This bit is set by hardware, cleared by hardware. RFUL = 0, Receive FIFO not full. RFUL = 1, Receive FIFO full.				
[6]	REMP	SPI Receive FIFO Empty Flag This bit is set by hardware, cleared by hardware. REMP = 0, Receive FIFO not empty. REMP = 1, Receive FIFO empty.				
[5]	Reserved	Reserved.				
[4:0]	RFIFONUM	SPI Number of Entries in the Receive FIFO This bit is set by hardware, cleared by hardware.				

SPI Status 246 Register

Register	Offset	RW	Description	Reset Value
SPISTAT2	SPI_BA+0x10	R/W	SPI Status 2 Register	0x00

Bits	Flag	Description			
[7]	TFUL	SPI Transmit FIFO Full Flag This bit is set by hardware, cleared by hardware. TFUL = 0, Transmit FIFO not full. TFUL = 1, Transmit FIFO full.			
[6]	TEMP	SPI Transmit FIFO Empty Flag This bit is set by hardware, cleared by hardware. TEMP = 0, Transmit FIFO not empty. TEMP = 1, Transmit FIFO empty.			
[5]	Reserved	Reserved.			
[4:0]	TFIFONUM	SPI Number of Entries in the Transmit FIFO This bit is set by hardware, cleared by hardware.			

SPI Interrupt Enable Register

Register	Offset	RW	Description	Reset Value
INTEN	SPI_BA+0x11	R/W	SPI Interrupt Enable Register	0x00

Bits	Flag	Description
[7:6]	Reserved	Reserved.
[5]	SLVCMIDIEN	SPI Slave Command Interrupt Enable Flag (Slave Mode Only) This bit is set by software, cleared by software. SLVCMIDIEN = 0, Slave command interrupt disabled. SLVCMIDIEN = 1, Slave command interrupt enabled.
[4]	ENDTIEN	SPI End of Transfer Interrupt Enable Flag This bit is set by software, cleared by software. ENDTIEN = 0, End of transfer interrupt disabled. ENDTIEN = 1, End of transfer interrupt enabled.
[3]	TFIFOIEN	SPI Transmit FIFO Interrupt Enable Flag This bit is set by software, cleared by software. In slave mode, end of read status transaction does not trigger this interrupt TFIFOIEN = 0, Receive FIFO interrupt disabled. TFIFOIEN = 1, Receive FIFO interrupt enabled.
[2]	RFIFOIEN	SPI Receive FIFO Interrupt Enable Flag This bit is set by software, cleared by software. RFIFOIEN = 0, Receive FIFO interrupt disabled. RFIFOIEN = 1, Receive FIFO interrupt enabled.
[1]	TFIFOURIEN	SPI Transmit FIFO Underrun Interrupt Enable Flag (Slave Mode Only) This bit is set by software, cleared by software. TFIFOURIEN = 0, Receive FIFO underrun interrupt disabled. TFIFOURIEN = 1, Receive FIFO underrun interrupt enabled.
[0]	RFIFOURIEN	SPI Receive FIFO Overrun Interrupt Enable Flag (Slave Mode Only) This bit is set by software, cleared by software. RFIFOURIEN = 0, Receive FIFO overrun interrupt disabled. RFIFOURIEN = 1, Receive FIFO overrun interrupt enabled.

SPI Interrupt Status Register

Register	Offset	RW	Description	Reset Value
INTSTAT	SPI_BA+0x12	R/W	SPI Interrupt Status Register	0x00

Bits	Flag	Description
[7:6]	Reserved	Reserved.
[5]	SLVCMDINTF	SPI Slave Command Interrupt Flag (Slave Mode Only) This bit is set by hardware, cleared by software. SLVCMDINTF = 0, Otherwise. SLVCMDINTF = 1, Slave command interrupt triggered.
[4]	ENDTINTF	SPI End of Transfer Interrupt Flag This bit is set by hardware, cleared by software. ENDTINTF = 0, Otherwise. ENDTINTF = 1, End of transfer interrupt triggered.
[3]	TFIFOINTF	SPI Transmit FIFO Interrupt Flag This bit is set by hardware, cleared by software. In slave mode, end of read status transaction does not trigger this interrupt TFIFOINTF = 0, Otherwise. TFIFOINTF = 1, Receive FIFO interrupt triggered.
[2]	RFIFOINTF	SPI Receive FIFO Interrupt Flag This bit is set by hardware, cleared by software. RFIFOINTF = 0, Otherwise. RFIFOINTF = 1, Receive FIFO interrupt triggered.
[1]	TFIFOURINTF	SPI Transmit FIFO Underrun Interrupt Flag (Slave Mode Only) This bit is set by hardware, cleared by software. TFIFOURINTF = 0, Otherwise. TFIFOURINTF = 1, Receive FIFO underrun interrupt triggered.
[0]	RFIFOURINTF	SPI Receive FIFO Overrun Interrupt Flag (Slave Mode Only) This bit is set by hardware, cleared by software. RFIFOURINTF = 0, Otherwise. RFIFOURINTF = 1, Receive FIFO overrun interrupt triggered.

SPI Interface Timing 0 Register

Register	Offset	RW	Description	Reset Value
INTFTIMO	SPI_BA+0x13	R/W	SPI Interface Timing 0 Register	0x00

Bits	Flag	Description
[7:0]	SCLKDIV	SPI Clock Divider Flag This bit is set by software, cleared by software. SCLK period = ((SCLKDIV+1)×2)×(Period of the SPI clock source) The SCLKDIV value 0xff is a special value which indicates that the SCLK frequency should be the same as the SPI source clock frequency.

SPI Interface Timing 1 Register

Register	Offset	RW	Description	Reset Value
INTFTIM1	SPI_BA+0x14	R/W	SPI Interface Timing 1 Register	0x00

Bits	Flag	Description
[7:6]	Reserved	Reserved.
[5:4]	CS2SCLK	SPI Minimum Time Between Edges of CS and Edges of SCLK This bit is set by software, cleared by software. The actual duration is (SCLK_Period/2)×(CS2CLK+1)
[3:0]	CSHT	SPI Minimum Time of CS Stay HIGH This bit is set by software, cleared by software. The actual duration is (SCLK_Period/2)×(CSHT+1)

SPI Slave Status 0 Register

Register	Offset	RW	Description	Reset Value
SLVSTAT0	SPI_BA+0x15	R/W	SPI Slave Status 0 Register	0x00

Bits	Flag	Description					
[7:0]	USERSTAT0	SPI	User	Defined	Status	0	Flag

The Slave Status Register keeps slave statuses. An SPI master can get these statuses by issuing status-reading commands.

SPI Slave Status 251 Register

Register	Offset	RW	Description	Reset Value
SLVSTAT1	SPI_BA+0x16	R/W	SPI Slave Status 1 Register	0x00

Bits	Flag	Description					
[7:0]	USERSTAT1	SPI	User	Defined	Status	1	Flag

The Slave Status Register keeps slave statuses. An SPI master can get these statuses by issuing status-reading commands.

SPI Slave Status 2 Register

Register	Offset	RW	Description	Reset Value
SLVSTAT2	SPI_BA+0x17	R/W	SPI Slave Status 2 Register	0x00

Bits	Flag	Description			
[7:3]	Reserved	Reserved.			
[2]	URRUN	SPI	Data	Underrun	Flag
		This bit is set by hardware, cleared by software. URRUN = 0, Data underrun not occurs. URRUN = 1, Data underrun occurs in the last transaction.			
[1]	ORRUN	SPI	Data	Overrun	Flag
		This bit is set by hardware, cleared by software. ORRUN = 0, Data overrun not occurs. ORRUN = 1, Data overrun occurs in the last transaction.			
[0]	RDY	SPI	Ready	Flag	
		This bit is set by software, cleared by hardware. When an SPI transaction other than slave status-reading command ends, this bit will be cleared to 0. RDY = 0, SPI busy. RDY = 1, SPI ready.			

The Slave Status Register keeps slave statuses. An SPI master can get these statuses by issuing status-reading commands.

SPI Slave Receive Counter 0 Register

Register	Offset	RW	Description	Reset Value
RCVCNT0	SPI_BA+0x18	R/W	SPI Slave Receive Counter 0 Register	0x00

Bits	Flag	Description					
[7:0]	RCVCNTL	SPI	Received	Data	Count	Low	Field
			This bit is set by hardware.				

SPI Slave Receive Counter 1 Register

Register	Offset	RW	Description	Reset Value
RCVCNT1	SPI_BA+0x19	R/W	SPI Slave Receive Counter 1 Register	0x00

Bits	Flag	Description					
[7:1]	Reserved	Reserved.					
[0]	RCVCNTH	SPI	Received	Data	Count	High	Field

SPI Slave Transmit Counter 0 Register

Register	Offset	RW	Description	Reset Value
TSMCNT0	SPI_BA+0x1A	R/W	SPI Transmit Counter 0 Register	0x00

Bits	Flag	Description					
[7:0]	TRNCNTL	SPI	Transmit	Data	Count	Low	Field

SPI Slave Transmit Counter 1 Register

Register	Offset	RW	Description	Reset Value
TSMCNT1	SPI_BA+0x1B	R/W	SPI Transmit Counter 1 Register	0x00

Bits	Flag	Description					
[7:1]	Reserved	Reserved.					
[0]	TRNCNTH	SPI	Transmit	Data	Count	High	Field

SPI Configuration Register

Register	Offset	RW	Description	Reset Value
SPICFG	SPI_BA+0x1C	R	SPI Configuration Register	0x00

Bits	Flag	Description				
[7:6]	Reserved	Reserved.				
[5:4]	TFIFOSIZE	SPI	Transmit FIFO	Size	Flag	
		This bit is set by hardware.				
		TFIFOSIZE = 0, 8-byte transmit FIFO size.				
[3:2]	Reserved	Reserved.				
[1:0]	RFIFOSIZE	SPI	Receive FIFO	Size	Flag	
		This bit is set by hardware.				
		RFIFOSIZE = 0, 8-byte receive FIFO size.				

6.15.3 Programming Model (Please refer to "Sample code project")

Master Transmit

Step 1 : Set SPI transfer format

Set SLV MODE = 0 (master mode) in TRNFMT0 Register.

Set ADRLEN = 1 (2-byte address), DATLEN = 7 (8-bit data) in TRNFMT1 Register.

Step 2 : Set SPI transfer control

Set WTRNCNT = 0 (1-byte data) in TRNCTRL1 Register.

Set CMDEN = 0 (no command phase), ADREN = 1 (address phase), TRNMODE = 1 (write only) in TRNCTRL3 Register.

Step 3 : Set SPI control

Set SPIRST = 1 (SPI reset), RFIFORST = 1 (receive FIFO reset), TFIFORST = 1 (transmit FIFO reset) in SPICRLO Register.

Step 4 : Set SPI interrupt enable

Set ENDTIEN = 1 in INTEN Register.

Step 5 : Set SPI interface timing

Set SCLKDIV = 0 ((SCLKDIV+1) x 2 x 80ns = 6MHz) in INTFTIM0 Register.

Step 6 : Set SPI address (2-byte address)

Set SPIADRO in SPIADRO Register.

Set SPIADR1 in SPIADR1 Register.

Step 7 : Set SPI data

Set SPIDAT in SPIDATA Register.

Step 8 : Start SPI data transfer

Set CMD = 0x01 in SPICMD Register to start SPI transmit.

Master Receive

Step 1 : Set SPI transfer format

Set SLV MODE = 0 (master mode) in TRNFMT0 Register.

Set ADRLEN = 1 (2-byte address), DATLEN = 7 (8-bit data) in TRNFMT1 Register.

Step 2 : Set SPI transfer control

Set RTRNCNT = 0 (1-byte data) in TRNCTRL0 Register.

Set CMDEN = 0 (no command phase), ADREN = 1 (address phase), TRNMODE = 2 (read only) in TRNCTRL3 Register.

Step 3 : Set SPI control

Set SPIRST = 1 (SPI reset), RFIFORST = 1 (receive FIFO reset), TFIFORST = 1 (transmit FIFO reset) in SPICRLO Register.

Step 4 : Set SPI interrupt enable

Set ENDTIEN = 1 in INTEN Register.

Step 5 : Set SPI interface timing

Set SCLKDIV = 0 ((SCLKDIV+1) x 2 x 80ns = 6MHz) in INTFTIM0 Register.

Step 6 : Set SPI address (2-byte address)

Set SPIADRO in SPIADRO Register.

Set SPIADR1 in SPIADR1 Register.

Step 7 : Start SPI data transfer

Set CMD = 0x01 in SPICMD Register to start SPI receive.

Slave Transmit

Step 1 : Set SPI transfer format

Set SLV MODE = 1 (slave mode) in TRNFMT0 Register.

Set ADRLEN = 0 (1-byte address), DATLEN = 7 (8-bit data) in TRNFMT1 Register.

Step 2 : Set SPI transfer control

Set WTRNCNT = 0 (1-byte data) in TRNCTRL1 Register.

Set TRN MODE = 1 (write only) in TRNCTRL3 Register.

Step 3 : Set SPI control

Set SPIRST = 1 (SPI reset), RFIFORST = 1 (receive FIFO reset), TFIFORST = 1 (transmit FIFO reset) in SPICTRL0 Register.

Step 4 : Set SPI interrupt enable

Set ENDTIEN = 1 in INTEN Register.

Step 5 : Set SPI data

Set SPIDAT in SPIDATA Register.

Step 6 : Set ready flag

Set RDY = 1 in SLVSTAT2 Register.

Slave Receive

Step 1 : Set SPI transfer format

Set SLV MODE = 1 (slave mode) in TRNFMT0 Register.

Set ADRLEN = 0 (1-byte address), DATLEN = 7 (8-bit data) in TRNFMT1 Register.

Step 2 : Set SPI transfer control

Set RTRNCNT = 0 (1-byte data) in TRNCTRL0 Register.

Set TRN MODE = 2 (read only) in TRNCTRL3 Register.

Step 3 : Set SPI control

Set SPIRST = 1 (SPI reset), RFIFORST = 1 (receive FIFO reset), TFIFORST = 1 (transmit FIFO reset) in SPICTRL0 Register.

Step 4 : Set SPI interrupt enable

Set ENDTIEN = 1 in INTEN Register.

6.16 Multi-Function ALU (MFA)

6.16.1 Overview

Features of Multi-Function ALU (MFA)

- 16-bit signed- or unsigned- multiplier
- IEEE754 floating point multiplier
- IEEE754 Log2 unit

Figure 6.16-1 MFA Block Diagram

16-bit Multiply Unit

MFA supports a single cycle 16-bit signed or unsigned multiply for fast multiply computation without software library overhead. The product of the multiply unit is a 32-bit data with friendly interface for accessing.

IEEE754 Floating Point Multiply Unit

MFA supports IEEE754 compatible floating-point standard for multiply operation with single, double precision, and rounding mode. The round mode is set by floating-point control register (FPCTRL). The product of the floating point multiply unit is a 32-bit data with status information defined in floating-point status register (FPSTAT).

IEEE754 Log2 Unit

MFA supports IEEE754 compatible floating-point standard for Log2 operation. The result of the floating-point log2 unit is a 32-bit data with status information define in log2 status register (LOGSTAT).

6.16.2 Register Map and Description

Base Address (MFA_BA) : 0xFE00				
Register	Offset	RW	Description	Reset Value
MULCTRL	MFA_BA+0x00	R/W	Multiply Control Register	0x00
MULPO	MFA_BA+0x01	R/W	Multiply Multiplier Data 0 Register	0x00
MULP1	MFA_BA+0x02	R/W	Multiply Multiplier Data 1 Register	0x00
MULCO	MFA_BA+0x03	R/W	Multiply Multiplicand Data 0 Register	0x00
MULC1	MFA_BA+0x04	R/W	Multiply Multiplicand Data 1 Register	0x00
MULPROD0	MFA_BA+0x05	R	Multiply Product Data 0 Register	0x00
MULPROD1	MFA_BA+0x06	R	Multiply Product Data 1 Register	0x00
MULPROD2	MFA_BA+0x07	R	Multiply Product Data 2 Register	0x00
MULPROD3	MFA_BA+0x08	R	Multiply Product Data 3 Register	0x00
FPCTRL	MFA_BA+0x09	R/W	Floating Point Multiply Control Register	0x00
FPMULPO	MFA_BA+0x0A	R/W	Floating Point Multiply Multiplier Data 0 Register	0x00
FPMULP1	MFA_BA+0x0B	R/W	Floating Point Multiply Multiplier Data 1 Register	0x00
FPMULP2	MFA_BA+0x0C	R/W	Floating Point Multiply Multiplier Data 2 Register	0x00
FPMULP3	MFA_BA+0x0D	R/W	Floating Point Multiply Multiplier Data 3 Register	0x00
FPMULC0	MFA_BA+0x0E	R/W	Floating Point Multiply Multiplicand Data 0 Register	0x00
FPMULC1	MFA_BA+0x0F	R/W	Floating Point Multiply Multiplicand Data 1 Register	0x00
FPMULC2	MFA_BA+0x10	R/W	Floating Point Multiply Multiplicand Data 2 Register	0x00
FPMULC3	MFA_BA+0x11	R/W	Floating Point Multiply Multiplicand Data 3 Register	0x00
FPPROD0	MFA_BA+0x12	R	Floating Point Multiply Product Data 0 Register	0x00
FPPROD1	MFA_BA+0x13	R	Floating Point Multiply Product Data 1 Register	0x00
FPPROD2	MFA_BA+0x14	R	Floating Point Multiply Product Data 2 Register	0x00
FPPROD3	MFA_BA+0x15	R	Floating Point Multiply Product Data 3 Register	0x00
FPSTAT	MFA_BA+0x16	R	Floating Point Multiply Status Register	0x00
LOGIN0	MFA_BA+0x17	R/W	Floating Point Log2 Input Data 0 Register	0x00
LOGIN1	MFA_BA+0x18	R/W	Floating Point Log2 Input Data 1 Register	0x00
LOGIN2	MFA_BA+0x19	R/W	Floating Point Log2 Input Data 2 Register	0x00
LOGIN3	MFA_BA+0x1A	R/W	Floating Point Log2 Input Data 3 Register	0x00
LOGOUT0	MFA_BA+0x1B	R	Floating Point Log2 Output Data 0 Register	0x00
LOGOUT1	MFA_BA+0x1C	R	Floating Point Log2 Output Data 1 Register	0x00
LOGOUT2	MFA_BA+0x1D	R	Floating Point Log2 Output Data 2 Register	0x00
LOGOUT3	MFA_BA+0x1E	R	Floating Point Log2 Output Data 3 Register	0x00
LOGSTAT	MFA_BA+0x1F	R	Floating Point Log2 Status Register	0x00

MFA Multiply Control Register

Register	Offset	RW	Description	Reset Value
MULCTRL	MFA_BA+0x00	R/W	Multiply Control Register	0x00

Bits	Flag	Description
[7:1]	Reserved	Reserved.
[0]	SIGN	Multiply Sign Flag This bit is set by software, and cleared by software. SIGN = 0, unsigned multiply. SIGN = 1, signed multiply.

MFA Multiply Multiplier Data Register

Register	Offset	RW	Description	Reset Value
MULPO	MFA_BA+0x01	R/W	Multiply Multiplier Data 0 Register	0x00
MULP1	MFA_BA+0x02	R/W	Multiply Multiplier Data 1 Register	0x00

Bits	Flag	Description
[7:0]	MULTIPLIER _x , x = 0, 1	Multiply Multiplier Data This byte is set by software, and cleared by software.

MFA Multiply Multiplicand Data Register

Register	Offset	RW	Description	Reset Value
MULCO	MFA_BA+0x03	R/W	Multiply Multiplicand Data 0 Register	0x00
MULC1	MFA_BA+0x04	R/W	Multiply Multiplicand Data 1 Register	0x00

Bits	Flag	Description
[7:0]	MULTIPLICAND _x , x = 0, 1	Multiply Multiplicand Data This byte is set by software, and cleared by software.

MFA Multiply Product Data Register

Register	Offset	RW	Description	Reset Value
MULPROD0	MFA_BA+0x05	R	Multiply Product Data 0 Register	0x00
MULPROD1	MFA_BA+0x06	R	Multiply Product Data 1 Register	0x00
MULPROD2	MFA_BA+0x07	R	Multiply Product Data 2 Register	0x00
MULPROD3	MFA_BA+0x08	R	Multiply Product Data 3 Register	0x00

Bits	Flag	Description
[7:0]	MULPRODUCTx, x = 0, 1, 2, 3	Multiply Product Data This byte is set by hardware within 1-T.

MFA Floating-Point Multiply Control Register

Register	Offset	RW	Description	Reset Value
FPCTRL	MFA_BA+0x09	R/W	Floating Point Multiply Control Register	0x00

Bits	Flag	Description
[7:3]	Reserved	Reserved.
[2:0]	ROUND	Floating-Point Multiply Round Mode This field is set by software, and cleared by software. ROUND = 0, Round to nearest (even). ROUND = 1, Round to zero. ROUND = 2, Round to positive infinity. ROUND = 3, Round to negative infinity. ROUND = 4, Round to nearest up. ROUND = 5, Round away from zero. ROUND = 6, Reserved. ROUND = 7, Reserved.

MFA Floating-Point Multiply Multiplier Data Register

Register	Offset	RW	Description	Reset Value
FPMULP0	MFA_BA+0x0A	R/W	Floating Point Multiply Multiplier Data 0 Register	0x00
FPMULP1	MFA_BA+0x0B	R/W	Floating Point Multiply Multiplier Data 1 Register	0x00
FPMULP2	MFA_BA+0x0C	R/W	Floating Point Multiply Multiplier Data 2 Register	0x00
FPMULP3	MFA_BA+0x0D	R/W	Floating Point Multiply Multiplier Data 3 Register	0x00

Bits	Flag	Description
[7:0]	FPMULTIPLIERx, x = 0, 1, 2, 3	Floating-Point Multiply Multiplier Data This byte is set by software, and cleared by software.

MFA Floating-Point Multiply Multiplicand Data Register

Register	Offset	RW	Description	Reset Value
FPMULC0	MFA_BA+0x0E	R/W	Floating Point Multiply Multiplicand Data 0 Register	0x00
FPMULC1	MFA_BA+0x0F	R/W	Floating Point Multiply Multiplicand Data 1 Register	0x00
FPMULC2	MFA_BA+0x10	R/W	Floating Point Multiply Multiplicand Data 2 Register	0x00
FPMULC3	MFA_BA+0x11	R/W	Floating Point Multiply Multiplicand Data 3 Register	0x00

Bits	Flag	Description
[7:0]	FPMULTIPLICAND _x , x = 0, 1, 2, 3	Floating-Point Multiply Multiplicand Data This byte is set by software, and cleared by software.

MFA Floating-Point Multiply Product Data Register

Register	Offset	RW	Description	Reset Value
FPPROD0	MFA_BA+0x12	R	Floating Point Multiply Product Data 0 Register	0x00
FPPROD1	MFA_BA+0x13	R	Floating Point Multiply Product Data 1 Register	0x00
FPPROD2	MFA_BA+0x14	R	Floating Point Multiply Product Data 2 Register	0x00
FPPROD3	MFA_BA+0x15	R	Floating Point Multiply Product Data 3 Register	0x00

Bits	Flag	Description
[7:0]	FPMULPRODUCT _x , x = 0, 1, 2, 3	Floating-Point Multiply Product Data This byte is set by hardware within 4-T.

MFA Floating-Point Multiply Status Register

Register	Offset	RW	Description	Reset Value
FPSTAT	MFA_BA+0x16	R	Floating Point Multiply Status Register	0x00

Bits	Flag	Description
[7]	Reserved	Reserved.
[6]	HUGEINT	Integer result after rounding has a magnitude greater than the largest representable 2's complement integer with the same sign.
[5]	INEXACT	floating-point multiply output is not equal to the infinitely precise result.
[4]	HUGE	Rounded floating-point number with unbounded exponent has a magnitude greater than the maximum normalized number.
[3]	TINY	Rounded floating-point number with unbounded exponent has a magnitude less than the minimum normalized number.
[2]	INVALID	Floating-point multiply operation is invalid.
[1]	INFINITY	Floating-point multiply output is infinity.
[0]	ZERO	Floating-point multiply output is zero.

MFA Floating-Point Log2 Input Data Register

Register	Offset	RW	Description	Reset Value
LOGIN0	MFA_BA+0x17	R/W	Floating Point Log2 Input Data 0 Register	0x00
LOGIN1	MFA_BA+0x18	R/W	Floating Point Log2 Input Data 1 Register	0x00
LOGIN2	MFA_BA+0x19	R/W	Floating Point Log2 Input Data 2 Register	0x00
LOGIN3	MFA_BA+0x1A	R/W	Floating Point Log2 Input Data 3 Register	0x00

Bits	Flag	Description
[7:0]	LOGINPUTx, x = 0, 1, 2, 3	Floating-Point Log2 Input Data This byte is set by software, and cleared by software.

MFA Floating-Point Log2 Output Data Register

Register	Offset	RW	Description	Reset Value
LOGOUT0	MFA_BA+0x1B	R	Floating Point Log2 Output Data 0 Register	0x00
LOGOUT1	MFA_BA+0x1C	R	Floating Point Log2 Output Data 1 Register	0x00
LOGOUT2	MFA_BA+0x1D	R	Floating Point Log2 Output Data 2 Register	0x00
LOGOUT3	MFA_BA+0x1E	R	Floating Point Log2 Output Data 3 Register	0x00

Bits	Flag	Description
[7:0]	LOGOUTPUTx, x = 0, 1, 2, 3	Floating-Point Log2 Output Data This byte is set by hardware within 4-T.

MFA Floating-Point Log2 Status Register

Register	Offset	RW	Description	Reset Value
LOGSTAT	MFA_BA+0x1F	R	Floating Point Log2 Status Register	0x00

Bits	Flag	Description
[7]	Reserved	Reserved.
[6]	HUGEINT	Integer result after rounding has a magnitude greater than the largest representable 2's complement integer with the same sign.
[5]	INEXACT	floating-point multiply output is not equal to the infinitely precise result.
[4]	HUGE	Rounded floating-point number with unbounded exponent has a magnitude greater than the maximum normalized number.
[3]	TINY	Rounded floating-point number with unbounded exponent has a magnitude less than the minimum normalized number.
[2]	INVALID	Floating-point multiply operation is invalid.
[1]	INFINITY	Floating-point multiply output is infinity.
[0]	ZERO	Floating-point multiply output is zero.

6.16.3 Programming Model (Please refer to “Sample code project”)

16-bit Multiply

Step 1 :

Set SIGN bit in MULCTRL Register.

Step 2 :

Set 16-bit multiplier data with most significant byte in MULP1 Register and least significant byte in MULP0 Register.

Step 3 :

Set 16-bit multiplicand data with most significant byte in MULC1 Register and least significant byte in MULC0 Register.

Step 4 :

SIGN = 0

1. Define global variables of unsigned char mul_data_char and unsigned long int mul_data_lint with the same SRAM address.

```
unsigned char xdata mul_data_char[4] _at_ 0x8000;  
unsigned long int xdata mul_data_lint _at_ 0x8000;
```

2. Read multiply product data with most significant byte in MULPROD3 Register and least significant byte in MULPROD0 Register, and stores the MULPROD_x, x = 0, 1, 2, 3, data to mul_data_char[4].

```
mul_data_char[3] = MFA->MULPROD[0];  
mul_data_char[2] = MFA->MULPROD[1];  
mul_data_char[1] = MFA->MULPROD[2];  
mul_data_char[0] = MFA->MULPROD[3];
```

3. User can use mul_data_lint directly for further application computing.

SIGN = 1

1. Define global variables of unsigned char mul_data_char and signed long int mul_data_lint with the same SRAM address.

```
unsigned char xdata mul_data_char[4] _at_ 0x8000;  
signed long int xdata mul_data_lint _at_ 0x8000;
```

2. Read multiply product data with most significant byte in MULPROD3 Register and least significant byte in MULPROD0 Register, and stores the MULPROD_x, x = 0, 1, 2, 3, data to mul_data_char[4].

```
mul_data_char[3] = MFA->MULPROD[0];  
mul_data_char[2] = MFA->MULPROD[1];  
mul_data_char[1] = MFA->MULPROD[2];  
mul_data_char[0] = MFA->MULPROD[3];
```

3. User can use mul_data_lint directly for further application computing.

Floating-Point Multiply

Step 1 :

Set ROUND field in FPCTRL Register.

Step 2 :

Set floating-point multiply multiplier data with most significant byte in FPMULP3 Register and least significant byte in FPMULP0 Register.

Step 3 :

Set floating-point multiply multiplicand data with most significant byte in FPMULC3 Register and least significant byte in FPMULC0 Register.

Step 4 :

1. Define global variables of unsigned char mul_data_char and float mul_data_fp with the same SRAM address.

```
unsigned char xdata mul_data_char[4] _at_ 0x8000;  
float xdata mul_data_fp _at_ 0x8000;
```

2. Read floating-point multiply product data with most significant byte in MULPROD3 Register and least significant byte in MULPROD0 Register, and stores the MULPRODx, x = 0, 1, 2, 3, data to mul_data_char[4].

```
mul_data_char[3] = MFA->FPPROD[0];  
mul_data_char[2] = MFA->FPPROD[1];  
mul_data_char[1] = MFA->FPPROD[2];  
mul_data_char[0] = MFA->FPPROD[3];
```

3. User can use mul_data_fp directly for further application computing.

Floating-Point Log2

Step 1 :

Set floating-point log2 input data with most significant byte in LOGIN3 Register and least significant byte in LOGIN0 Register.

Step 2 :

1. Define global variables of unsigned char log2_data_char and float log2_data_fp with the same SRAM address.

```
unsigned char xdata log2_data_char[4] _at_ 0x8000;  
float xdata log2_data_fp _at_ 0x8000;
```

2. Read log2 output data with most significant byte in LOGOUT3 Register and least significant byte in LOGOUT0 Register, and stores the LOGOUTx, x = 0, 1, 2, 3, data to log2_data_char[4].

```
log2_data_char[3] = MFA->LOGOUT[0];
```

```
log2_data_char[2] = MFA->LOGOUT[1];
log2_data_char[1] = MFA->LOGOUT[2];
log2_data_char[0] = MFA->LOGOUT[3];
3. User can use log2_data_fp directly for further application computing.
```

6.17 Capture (CAP)

6.17.1 Overview

The FE81 series supports a Capture (CAP) controller which can be used for sampling the pulse width of external input signal. The CAP controller supports 4-channel with each 4 sampling modes.

Features of Capture Controller

- 4 channels for input capture function
- 4 capture modes of edge, rising to falling, falling to rising, falling to falling
- Input signal filter function

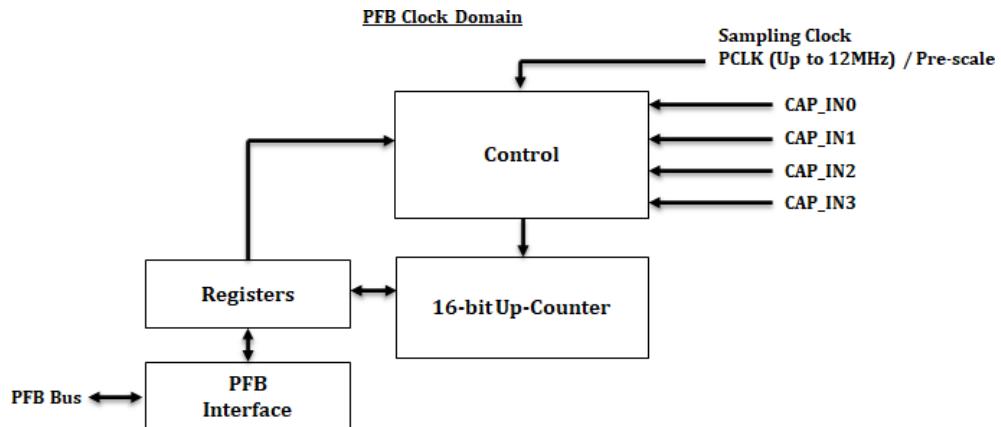


Figure 6.17-1 Capture Controller Block Diagram

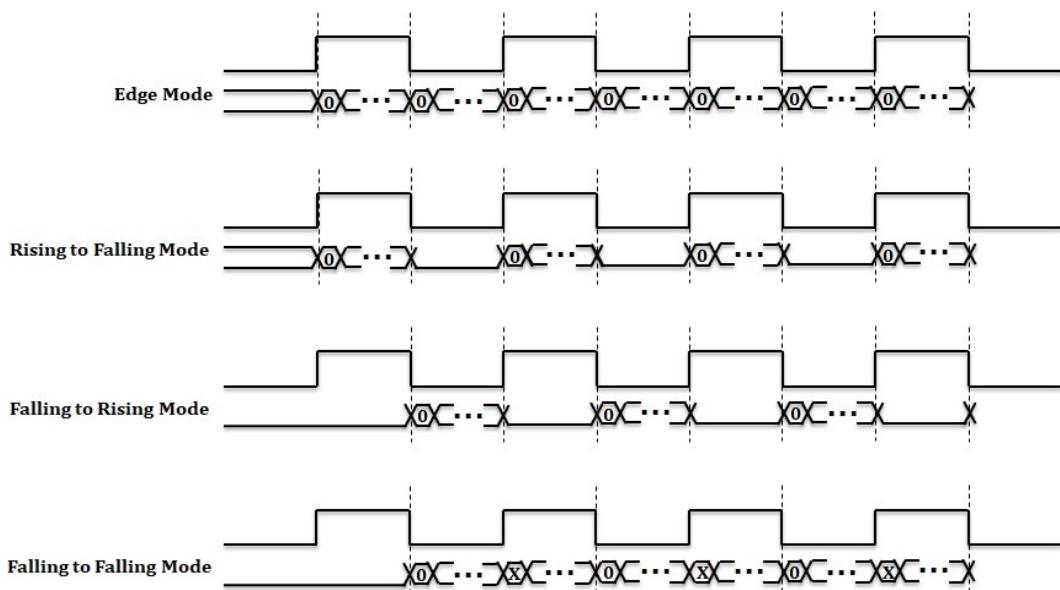


Figure 6.17-2 Capture Mode

Sampling Clock

The clock source of CAP controller is PFB clock (PCLK) and is able to be divided by PRESCALE Register depicted in Section 6.17.2.

Capture edge mode

While input signal toggling, the CAP counter value is preserved, and is auto-zero by hardware without software setting overhead. While edge mode interrupt is enabled, the counter value can be accessed directly by application in ISR for counting the “high pulse width” and “low pulse width” of the input signal.

Capture rising to falling mode

While input signal transitions from low to high, the CAP counter is auto-zero and starting counting. While input signal transition from high to low, the CAP counter value is preserved, and interrupt signal is asserted if interrupt is enabled. Application code can access the CAP counter in ISR for counting the “high pulse width” of the input signal.

Capture falling to rising mode

While input signal transitions from high to low, the CAP counter is auto-zero and starting counting. While input signal transition from low to high, the CAP counter value is preserved, and interrupt signal is asserted if interrupt is enabled. Application code can access the CAP counter in ISR for counting the “low pulse width” of the input signal.

Capture falling to falling mode

While input signal transitions from high to low, the CAP counter value is preserved, and is auto-zero by hardware. While interrupt is enabled, the interrupt signal is asserted, and application code can access the CAP counter in ISR for counting the “high + low pulse width” of the input signal.

Input Signal Filter

The CAP input signal is filtered according to CAPxLPF field, x = 0, 1, 2, 3, defined in LPFSEL Register, which is used for glitch immunization for stability of the input signal.

Capture Input Signal

The capture input signal is pin-shared with GPIO which is illustrated as follows.

CAP Pin	GPIO Pin
CAP_IN0	PD0
CAP_IN1	PD1
CAP_IN2	PD2
CAP_IN3	PD3

6.17.2 Register Map and Description

Base Address (CAP_BA) : 0xFE00				
Register	Offset	RW	Description	Reset Value
PRESCALE	CAP_BA+0x00	R/W	CAP Pre-scale Register	0x00
LPFSEL	CAP_BA+0x01	R/W	CAP Low Pass Filter Selection Register	0x00
MODE	CAP_BA+0x02	R/W	CAP Mode Selection Register	0x00
INTEN	CAP_BA+0x03	R/W	CAP Interrupt Enable Register	0x00
CATCTRL	CAP_BA+0x04	R/W	CAP Control Register	0x00
CAPOCNTL	CAP_BA+0x06	R	CAP Channel 0 Counter Low Register	0x00
CAPOCNTH	CAP_BA+0x07	R	CAP Channel 0 Counter High Register	0x00
CAP1CNTL	CAP_BA+0x08	R	CAP Channel 1 Counter Low Register	0x00
CAP1CNTH	CAP_BA+0x09	R	CAP Channel 1 Counter High Register	0x00
CAP2CNTL	CAP_BA+0x0A	R	CAP Channel 2 Counter Low Register	0x00
CAP2CNTH	CAP_BA+0x0B	R	CAP Channel 2 Counter High Register	0x00
CAP3CNTL	CAP_BA+0x0C	R	CAP Channel 3 Counter Low Register	0x00
CAP3CNTH	CAP_BA+0x0D	R	CAP Channel 3 Counter High Register	0x00
CAPINTF	CAP_BA+0x0F	R	CAP Interrupt Flag Register	0x00

Capture Pre-Scale Register

Register	Offset	RW	Description	Reset Value
PRESCALE	CAP_BA+0x00	R/W	CAP Pre-scale Register	0x00

Bits	Flag	Description
[7:0]	PRESCALE	Capture Counter Clock Pre-Scale Flag This field is set by software, cleared by software. Sampling Clock = (PCLK) / (PRESCALE + 1)

Capture Low Pass Filter Selection Register

Register	Offset	RW	Description	Reset Value
LPFSEL	CAP_BA+0x01	R/W	CAP Low Pass Filter Selection Register	0x00

Bits	Flag	Description
[7:6]	CAP3LPF	CAP Channel 3 Input Signal Low Pass Filter Number This field is set by software, cleared by software. CAP3LPF = 0, 1 consecutive input signal sampling without glitch. CAP3LPF = 1, 2 consecutive input signal sampling without glitch. CAP3LPF = 2, 3 consecutive input signal sampling without glitch. CAP3LPF = 3, 4 consecutive input signal sampling without glitch.
[5:4]	CAP2LPF	CAP Channel 2 Input Signal Low Pass Filter Number This field is set by software, cleared by software. CAP2LPF = 0, 1 consecutive input signal sampling without glitch. CAP2LPF = 1, 2 consecutive input signal sampling without glitch. CAP2LPF = 2, 3 consecutive input signal sampling without glitch. CAP2LPF = 3, 4 consecutive input signal sampling without glitch.
[3:2]	CAP1LPF	CAP Channel 1 Input Signal Low Pass Filter Number This field is set by software, cleared by software. CAP1LPF = 0, 1 consecutive input signal sampling without glitch. CAP1LPF = 1, 2 consecutive input signal sampling without glitch. CAP1LPF = 2, 3 consecutive input signal sampling without glitch. CAP1LPF = 3, 4 consecutive input signal sampling without glitch.
[1:0]	CAP0LPF	CAP Channel 0 Input Signal Low Pass Filter Number This field is set by software, cleared by software. CAP0LPF = 0, 1 consecutive input signal sampling without glitch. CAP0LPF = 1, 2 consecutive input signal sampling without glitch. CAP0LPF = 2, 3 consecutive input signal sampling without glitch. CAP0LPF = 3, 4 consecutive input signal sampling without glitch.

Capture Mode Selection Register

Register	Offset	RW	Description	Reset Value
MODE	CAP _BA+0x02	R/W	CAP Mode Selection Register	0x00

Bits	Flag	Description					
[7:6]	CAP3MODE	CAP	Channel	3	Mode	Selection	Flag
		This field is set by software, cleared by software. CAP3MODE = 0, Edge toggle. CAP3MODE = 1, Rising to Falling. CAP3MODE = 2, Falling to rising. CAP3MODE = 3, Falling to falling.					
[5:4]	CAP2MODE	CAP	Channel	2	Mode	Selection	Flag
		This field is set by software, cleared by software. CAP2MODE = 0, Edge toggle. CAP2MODE = 1, Rising to Falling. CAP2MODE = 2, Falling to rising. CAP2MODE = 3, Falling to falling.					
[3:2]	CAP1MODE	CAP	Channel	1	Mode	Selection	Flag
		This field is set by software, cleared by software. CAP1MODE = 0, Edge toggle. CAP1MODE = 1, Rising to Falling. CAP1MODE = 2, Falling to rising. CAP1MODE = 3, Falling to falling.					
[1:0]	CAP0MODE	CAP	Channel	0	Mode	Selection	Flag
		This field is set by software, cleared by software. CAP0MODE = 0, Edge toggle. CAP0MODE = 1, Rising to Falling. CAP0MODE = 2, Falling to rising. CAP0MODE = 3, Falling to falling.					

Capture Interrupt Enable Register

Register	Offset	RW	Description	Reset Value
INTEN	CAP_BA+0x03	R/W	CAP Interrupt Enable Register	0x00

Bits	Flag	Description
[7]	CAP3OIEN	CAP Channel 3 Counter Overflow Interrupt Enable Flag This bit is set by software, cleared by software. CAP3OIEN = 0, Idle. CAP3OIEN = 1, Counter overflow.
[6]	CAP3IEN	CAP Channel 3 Counting Ready Interrupt Enable Flag This bit is set by software, cleared by software. CAP3IEN = 0, Idle. CAP3IEN = 1, Counting ready while mode condition is satisfied.
[5]	CAP2OIEN	CAP Channel 2 Counter Overflow Interrupt Enable Flag This bit is set by software, cleared by software. CAP2OIEN = 0, Idle. CAP2OIEN = 1, Counter overflow.
[4]	CAP2IEN	CAP Channel 2 Counting Ready Interrupt Enable Flag This bit is set by software, cleared by software. CAP2IEN = 0, Idle. CAP2IEN = 1, Counting ready while mode condition is satisfied.
[3]	CAP1OIEN	CAP Channel 1 Counter Overflow Interrupt Enable Flag This bit is set by software, cleared by software. CAP1OIEN = 0, Idle. CAP1OIEN = 1, Counter overflow.
[2]	CAP1IEN	CAP Channel 1 Counting Ready Interrupt Enable Flag This bit is set by software, cleared by software. CAP1IEN = 0, Idle. CAP1IEN = 1, Counting ready while mode condition is satisfied.
[1]	CAP0OIEN	CAP Channel 0 Counter Overflow Interrupt Enable Flag This bit is set by software, cleared by software. CAP0OIEN = 0, Idle. CAP0OIEN = 1, Counter overflow.
[0]	CAPOIEN	CAP Channel 0 Counting Ready Interrupt Enable Flag This bit is set by software, cleared by software. CAPOIEN = 0, Idle. CAPOIEN = 1, Counting ready while mode condition is satisfied.

Capture Control Register

Register	Offset	RW	Description	Reset Value
CAPCTRL	CAP_BA+0x04	R/W	CAP Control Register	0x00

Bits	Flag	Description				
[7]	CAP3EN	CAP Channel 3 Enable This bit is set by software, cleared by software. CAP3EN = 0, Idle. CAP3EN = 1, Capture channel 0 is enabled.				
[6]	CAP2EN	CAP Channel 2 Enable This bit is set by software, cleared by software. CAP2EN = 0, Idle. CAP2EN = 1, Capture channel 0 is enabled.				
[5]	CAP1EN	CAP Channel 1 Enable This bit is set by software, cleared by software. CAP1EN = 0, Idle. CAP1EN = 1, Capture channel 0 is enabled.				
[4]	CAPOEN	CAP Channel 0 Enable This bit is set by software, cleared by software. CAPOEN = 0, Idle. CAPOEN = 1, Capture channel 0 is enabled.				
[3:0]	Reserved	Reserved.				

Capture Control Register

Register	Offset	RW	Description	Reset Value
CAP0CNTL	CAP_BA+0x06	R	CAP Channel 0 Counter Low Register	0x00
CAP0CNTH	CAP_BA+0x07	R	CAP Channel 0 Counter High Register	0x00

Register	Offset	RW	Description	Reset Value
CAP1CNTL	CAP_BA+0x08	R	CAP Channel 1 Counter Low Register	0x00
CAP1CNTH	CAP_BA+0x09	R	CAP Channel 1 Counter High Register	0x00

Register	Offset	RW	Description	Reset Value
CAP2CNTL	CAP_BA+0x0A	R	CAP Channel 2 Counter Low Register	0x00
CAP2CNTH	CAP_BA+0x0B	R	CAP Channel 2 Counter High Register	0x00

Register	Offset	RW	Description	Reset Value
CAP3CNTL	CAP_BA+0x0C	R	CAP Channel 3 Counter Low Register	0x00
CAP3CNTH	CAP_BA+0x0D	R	CAP Channel 3 Counter High Register	0x00

Bits	Flag	Description					
[7:0]	CAPxCNTL, x = 0, 1, 2, 3	CAP	Channel	x	Counter	Low	Byte

This bit is set by hardware.

Bits	Flag	Description					
[7:0]	CAPxCNTH, x = 0, 1, 2, 3	CAP	Channel	x	Counter	High	Byte

This bit is set by hardware.

Capture Interrupt Flag Register

Register	Offset	RW	Description	Reset Value
CAPINTF	CAP_BA+0x0F	R	CAP Interrupt Flag Register	0x00

Bits	Flag	Description
[7]	CAP3OF	CAP Channel 3 Counter Overflow Interrupt Flag (Read for Clear) This bit is set by hardware, cleared by software. CAP3OF = 0, Idle. CAP3OF = 1, Counter overflow interrupt flag.
[6]	CAP3F	CAP Channel 3 Counting Ready Interrupt Flag (Read for Clear) This bit is set by hardware, cleared by software. CAP3F = 0, Idle. CAP3F = 1, Counting ready interrupt flag.
[5]	CAP2OF	CAP Channel 2 Counter Overflow Interrupt Flag (Read for Clear) This bit is set by hardware, cleared by software. CAP2OF = 0, Idle. CAP2OF = 1, Counter overflow interrupt flag.
[4]	CAP2F	CAP Channel 2 Counting Ready Interrupt Flag (Read for Clear) This bit is set by hardware, cleared by software. CAP2F = 0, Idle. CAP2F = 1, Counting ready interrupt flag.
[3]	CAP1OF	CAP Channel 1 Counter Overflow Interrupt Flag (Read for Clear) This bit is set by hardware, cleared by software. CAP1OF = 0, Idle. CAP1OF = 1, Counter overflow interrupt flag.
[2]	CAP1F	CAP Channel 1 Counting Ready Interrupt Flag (Read for Clear) This bit is set by hardware, cleared by software. CAP1F = 0, Idle. CAP1F = 1, Counting ready interrupt flag.
[1]	CAP0OF	CAP Channel 0 Counter Overflow Interrupt Flag (Read for Clear) This bit is set by hardware, cleared by software. CAP0OF = 0, Idle. CAP0OF = 1, Counter overflow interrupt flag.
[0]	CAP0F	CAP Channel 0 Counting Ready Interrupt Flag (Read for Clear) This bit is set by hardware, cleared by software. CAP0F = 0, Idle. CAP0F = 1, Counting ready interrupt flag.

6.17.3 Programming Model (Please refer to “Sample code project”)

Step 1: Set clock pre-scale register by PRESCALE Register

Step 2: Set CAPxLPF, $x = 0, 1, 2, 3$, of input signal filter in LPFSEL Register

Step 3: Set capture mode by CAPxMODE, $x = 0, 1, 2, 3$, field of Mode Register

Step 4: Set interrupt enable flag by CAPxEN, $x = 0, 1, 2, 3$, field of INTEN Register

Step 5: Enable capture channel by CAPxEN, $x = 0, 1, 2, 3$, field of CAPCTRL Register

Step 6: Wait for Interrupt

Step 7: In capture ISR, read CAPINTF Register for clearing related interrupt flag and read related channel counter value by CAPxCNTL and CAPxCNTH, $x = 0, 1, 2, 3$ Register